INL/EXT-12-26182

Uncertainty Analysis of
RELAPS-3D©

Alexandra E. Gertman
George L. Mesina

July 2012

—

The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance

| daho National
Laboratory

INL/EXT-12-26182

Uncertainty Analysis of RELAP5-3DO©

Alexandra E. Gertman
George L. Mesina

July 2012

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
International RELAPS5 User Group
and for the
U.S. Department of Energy
Under DOE Idaho Operations Office
Contract DE-AC07-051D14517

Boise State University

ScholarWorks

Mathematics Graduate Projects and Theses Department of Mathematics

Uncertainty Analysis of RELAPS-3D©

Alexandra E. Gertman
Boise State University

George L. Mesina
Idaho National Laboratory

Uncertainty Analysis of RELAP5-3D©

Alexandra E. Gertman* Dr. George L. Mesina'

July 2012

(©2012
Alexandra E. Gertman and Dr. George L. Mesina

ALL RIGHTS RESERVED

*Mathematics Department, Boise State University
fIdaho National Laboratory

Abstract

As world-wide energy consumption continues to increase, so does the demand for the
use of alternative energy sources, such as Nuclear Energy. Nuclear Power Plants cur-
rently supply over 370 gigawatts of electricity, and more than 60 new nuclear reactors
have been commissioned by 15 different countries. The primary concern for Nuclear
Power Plant operation and lisencing has been safety. The safety of the operation of
Nuclear Power Plants is no simple matter- it involves the training of operators, de-
sign of the reactor, as well as equipment and design upgrades throughout the lifetime
of the reactor, etc. To safely design, operate, and understand nuclear power plants,
industry and government alike have relied upon the use of best-estimate simulation
codes, which allow for an accurate model of any given plant to be created with well-
defined margins of safety. The most widely used of these best-estimate simulation codes
in the Nuclear Power industry is RELAP5-3D. Our project focused on improving the
modeling capabilities of RELAP5-3D by developing uncertainty estimates for its cal-
culations. This work involved analyzing high, medium, and low ranked phenomena
from an INL PIRT on a small break Loss-Of-Coolant Accident as well as an analysis
of a large break Loss-Of-Coolant Accident. Statistical analyses were performed using
correlation coefficients. To perform the studies, computer programs were written that
modify a template RELAP5-3D input deck to produce one deck for each combination
of key input parameters. Python scripting enabled the running of the generated input
files with RELAP5-3D on INL’s massively parallel cluster system. Data from the stud-
ies was collected and analyzed with SAS. Summaries of the results of our studies are
presented.

Table of Contents

1 Nomenclature 5
2 Motiviation 6
3 Standard Formulas 8

3.1 General Definitions e

3.2 Project Specific Definitions o L 10
4 Coefficients of Correlation 11
4.1 General Properties of Correlation Coefficients 11
4.2 Pearson’s Product Moment Correlation Coefficient 14
4.3 Spearman’s Rho 15
4.3.1 Generic Example of Computing Spearman’s Rho and the Correspond-
ing P-value o 16
4.4 Kendall’'s Tau o 16
4.4.1 Generic Example of Computing Kendall’s Tau and the Corresponding
P-value 17
4.5 Discussion of Pearson, Spearman, and Kendall 19
5 Experimental Information 20
51 RELAP5-3D e 20
5.1.1 Terminology and Basic Deck Requirements[7, p. A1-1] 20
5.1.2 Safety Analysis of NPPs & BE Codes 21
5.1.3 About 21
5.1.4 Running RELAP5-3D 21
5.2 AP600 Deck 22
5.2.1 Background on the AP600 Nuclear Power Plant 22
5.2.2 Variable Names, Representation, & Corresponding PIRT[1] Phenomena 23
5.2.3 Studies with the AP600 Deck 23
5.3 LOFT Deck e 27
5.3.1 Background Information on the LOFT Nuclear Power Plant 27
5.3.2 Variable Names and Corresponding Phenomena [15] 28
5.3.3 LOFT Studies 28
5.4 Input Modification Program0 oL 29

5.4.1 Marked Input File oo
5.4.2 Specification Files
5.4.3 Main Program o
5.5 Running on the Cluster & Python Scripting
5.6 Using SASO

Results

6.1 APG0O Studies
6.1.1 AP600 Correlation Coefficient Classification
6.1.2 Discussion of the Rankings of the Phenomena

6.2 LOFT e
6.2.1 LOFT Correlation Classification
6.2.2 Ranking the Phenomena Following the Correlation Computation . .

Final Conclusions and Potential Future Work

Input Modification Program

Template Spec File

Example of a Generator Spec File

Example of a NodeSpec File

Python Script for Running Studies on INL’s Supercomputer, Quark

SAS Reports

F.1 AP600 2 inch Break, Top 4 Variables
F.2 AP600: 4 inch Break, Top 5 Variables
F.3 AP600: 6 inch Break, Top 5 Variables
F.4 AP600: 8 inch Break, Top 4 Variables
F.5 LOFT: 3 Values per Variable
F.6 LOFT: 6 Values per Variable

35
35
35
35
36
36
36

37

40

51

52

52

1 Nomenclature[1]

Accronym Definition

ADS
ALWR
AP600

CMT
ECCS

INL
IRWST

LBLOCA
LOCA
MSLB

NPP

NRC

PIRT

PPMCC
PRHR
PWR
SBLOCA
SG

>

>

Automatic Depressurization System
Advanced Light-Water Reactor

Advanced Passive 600 MWe Reactor

Core Makeup Tank

Emergency Core Coolant System

Idaho National Laboratory

In-containment Refueling Water Storage Tank
Large Break Loss-of-Coolant Accident
Loss-of-Coolant Accident

Main Steam Line Break

Nuclear Power Plant

United States Nuclear Regulatory Commission !
Phenomena Identification and Ranking Table
Pearson Product Moment Correlation Coefficient
Passive Residual Heat Removal

Pressurized Water Reactor

Small Break Loss-of-Coolant Accident

Steam Generator

The estimated value of PPMCC

The estimated value of Spearman’s rho

The estimated value of Kendall’s tau

L Also referred to as USNRC

2 Motiviation

As scientists, we wish to confidently provide the answer to any question quantitatively.
However, every measured value has uncertainty attached to it and thus any answer we
provide must include uncertainty. Uncertainty in measurement is not the only uncertainty
we must concern ourselves with. For any system we construct, outside factors will play
some role within our calculations and findings, and therefore additional uncertainties must

be accounted for in any solutions we provide.

In practice it is not reasonable to assume that we could quantify all uncertainties for a
particular solution. Even if it were possible to quantify all possible solutions, combining all
the uncertainties together could cause our data to lose significance, i.e. to become “washed
out” in terms of significance. Therefore we must utilize practices that limit the number of
uncertainties we consider for any particular problem. This is where the studies of Statistical

Uncertainty Analysis and Sensitivity Analysis have resulted from.[§]

Uncertainty (and Sensitivity) Analysis continue to be vitally important to Nuclear Power
Plants (NPPs), as well as many other fields. For NPPs in particular, the fields of uncertainty
and sensitivity analysis are vitally important, as margins of safety for plant operation are

a critical aspect of licensing and plant operation.

In 1988, the USNRC (United States Nuclear Regulatory Commission) issued a revision to
the emergency core coolant system (ECCS) which allows for the use of best estimate plus
uncertainty methods in safety analysis of LWRs (Light Water Reactors). In support of
this licensing revision, the code scaling, applicability and uncertainty (CSAU) methodology
was developed. As a part of that methodology, the Phenomena Identification and Ranking
Table (PIRT) was developed.[14]

The PIRT process is a structured and facilitated elicitation process in which experts are

asked to rank various phenomena pertaining to a particular scenario. The phenomena
are typically classified as “high”, “medium”, or “low”.[6] The PIRT process of today also
typically includes the utilization of best-estimate codes to assist in the ranking process of

phenomena.

We wish to find a way to mathematically evaluate the accuracy of PIRTSs, and to provide

insight to validate and/or to make suggested changes to a given PIRT.

To do this, we utilized a RELAP5-3D input deck and a corresponding PIRT to determine
variables of interest. Using those, we were able to create a variable specification file (spec
file), as well as a template input file. We designed a program which was able to take the
template input file and a specification file for the study and generate more specification files
which would allow the study to be broken into sets. Then each set was run individually on
the INL’s supercomputer cluster (using a Python script), where up to 1,737 input files were
created using our program, and run with a RELAP5-3D executable. The data was collected
using the python script, and then a statistical analysis was conducted. A depiction of this

process can be seen in Figure 1.

Specification /Speclﬁcatlon

Statistical
Analysis

1, |—>{RELAPS-3D ———————x
% 2 Collect Key Values in
file for Node 1 — — Node 1 Results Fil
file for study e W ——= sults File \
Distribute _| Specification Collect Key Values in
runs evenly | file for Node 2 Node 2 ResultsFile | [
r
- - /
@ &
Template - VLT _ S -
Input File \ Input 1 RELAPS-3D . .
Specification : : Collect Key Values in
file for Node K - . Node K Results File
Input N RELAP5-3D

_CLUSTER S

Figure 1: Algorithmic Design

We will begin by listing general statistical definitions in Section 3.1 on Page 8, defining
project specific definitions in Section 3.2 on Page 10, and then discussing Coefficients of
Correlation in Section 4 on Page 11. We will discuss general properties of correlation
coefficients in Section 4.1 on Page 11, and discuss three types of correlation coefficients in
Sections 4.2, 4.3, and 4.4 on Pages 14, 15, and 16. The relationship between the three is
discussed in Section 4.5 on Page 19. We then discuss our experiments in Section 5 on Page
20. We will conclude by discussing our results in Section 6 on Page 35, summarizing our

findings and discussing future work following from this project in Section 7 on Page 37.

3 Standard Formulas

3.1 General Definitions

For a general closed non-degenerate interval, [c, d], with n points equally spaced within the
d—c
n—1

interval (i.e. uniformly distributed), the increment size of the interval, £, is £ =

The probability that a sample point z will occur is the proportion of ocurrences of the

sample point in a long series of experiments, and is denoted by P(z). P(z) € [0, 1].

The probability density function (PDF) of a continuous random variable X, denoted by
f(x), is defined such that [*_ f(x)da = 1. The probability that an observation lies between
x1 and x9 is defined as: P(x; < X < x9) = fﬁ f(x)dx. The mean (u,) or expected value

E[X] of the continuous random variable X, is E[X] = [~ xf(x)dz.

Other expectations are mathematically useful and important. We may define expecation

more generally for g(X), a function of the continuous random variable X, by:

The variance of the continuous random variable X, where p, = E[X] is constant, is defined

as:

variance(X) = 0, = B[(X — pz)?] = [%_ (@ — pa)? f(2)da = E[X?] — {pa}>.

The covariance of two random variables, X and Y with PDF f(z,y), is defined as:

Cov(X,Y) = E[(X — pa)(Y — py)] = [T J7o0 (X = 1) (Y —) f (=, y)dyde =
120 o wyf (@, y)dady — pe BIX] — py B[Y] + popy = E[XY] — pxpy

Let X be a random variable with n data points. Let each point be denoted by z; for

i=1,2,...,n. (i.e. the data points are x1, xa, ..., Tp.)

The sample mean of X, /i, is defined as®:

Ll
fin = ;xi.[z, p 39,81-82,87,106-113]
1=

2 is an unbiased estimate of 2, is defined as:

) S ()

2 _ pls2] — _ =1 J11, p. 11
7 5] n—1 n—1 11, p. 1]

The sample variance of X, 62, where 3

The sample covariance of two random variables, X, and Y, each with n data points, where

each point of X is denoted by x; and each point of Y is denoted by y; for i =1,2,...,n, is

Cov(X,Y) 1271[)i — 4iy)

=1

2;£z is also denoted z

3.2 Project Specific Definitions

In our input modification program, we are given a base file name, the number of variables,
the number of sets the study will be divided into, the number of groups of variables,? as
well as a list of variables and some basic variable information. The variable information
includes the minimum and maximum values of the interval over which the variable ranges,
the number of points within the interval that the variable will have (i.e. sample size), the
standard deviation of the variable, the type of probability distribution the points will have
within the interval (currently only the uniform is available in our program), and the group

number of the variable.

For a specific variable, v, with n points, a minimum of a, and a maximum of b (where
a < b), for which the points are distributed uniformly throughout the interval, the following

formulas follow from the general definitions.

b—a
fv_

n_
. _b—a
oy = 5

~ 1 1 n)) 2 1 1 n b—a, b—(l2
=4 n—li_l{a‘i_fv(z_l)_ﬂv] - n—l;[a+n—1(l_1)_ 5
1 1 « 2
= Sn(n = 1) nl;[&m—a—bn—b—2az+2bz]

3In some cases, groups of variables may need to be changed simultaneously in input file generation, and
in those cases, groups are needed. In the case where a set of variables needs to be simultaneously changed
all of those variables will be in one group, and in the case where only one variable needs to be changed it
will be placed in its own group. For instance, in the LOFT study discussed later in the paper, variables 1-24
represent peaking factor and are in group one, variable 25 represents fuel clad gap width and is in group 2,
variables 26-43 represent fuel thermal conductivityand belong to group 3, etc.

10

4 Coeflicients of Correlation

Let X and Y be two random variables with a bivariate probability distribution.

The covariance of X and Y, denoted by Cov(X,Y'), is a measure of the amount of association

(or, equivalently, correspondence) and the direction of association between X and Y.

The most important measure of the degree of correlation between two variables is the
correlation coefficient. It standardizes the covariance in such a way as to eliminate the

dependency that covariance has on the scale of measurement for the data set. [2, 187]

4.1 General Properties of Correlation Coefficients

A correlation coefficient is said to measure the strength of the relationship between variables.
It is not an inferential statistical test. Rather, it is a descriptive statistical measure that

depicts the strength of the relationship between two or more variables.

Let ¢ denote a correlation coefficient of X and Y.

¢ should satisfy four key criteria.[3]

1. ¢e[-1,1]

2. If the larger (smaller) values of X tend to be paired with the larger (smaller) values
of Y = (> 0, (— +1 if the correlation is strong. = 3 a positive correlation between

X and Y.

3. If the larger (smaller) values of X tend to be paired with the smaller (larger) values
of Y, = (< 0 and ¢ — —1 if the correlation is strong. = 3 a negative correlation

between X and Y.

11

4. If the values of X tend to be randomly paired with the values of Y = ¢ — 0. ¢ When
¢ ~ 0, = X and Y are uncorrelated (or, equivalently have no correlation, or zero

correlation.)

Correlational information does not provide any conclusions regarding cause and effect,

rather it indicates the degree of statistical relationship between two variables. [11, p 72]

The absolute value of ¢, |(|, indicates the strength of the relationship between X and Y.
As [(] — 1, the stronger the relationship between X and Y, and the more accurately a
researcher can predict the value of y; given z;. As || — 0, the weaker the relationship
between X and Y, and the less accurately a researcher can predict a particular y; given
z;. When ¢ = 0, the relationship between X and Y cannot be predicted as (is no more

accurate than a prediction based purely upon chance.[11, p 945-946]

The sign of ¢ indicates the direction of the relationship between X and Y. ¢ > 0 indicates

a direct relationship and ¢ < 0 indicates an inverse relationship.

Some general guidelines for the interpretation of ¢ are:

e (€[0.7,1] = strong direct relationship
e (€10.3,0.69] = moderate direct relationship
e (€10.01,0.29] = weak direct relationship

e (~ 0 = no consistent pattern which allows for prediction of one variable’s values

based upon knowledge of the other variable’s values
e (€[-0.29,—-0.01] = weak indirect relationship

e (€[—0.69,—0.3] = moderate indirect relationship

4¢ ~ 0 when X and Y are independent.(=0 % X and Y are independent

12

e (€ [-1,—0.7] = strong indirect relationship. [11, p 72]

This allows us to make a fairly intuitive comparison of the strength of a correlation coefficient
to a PIRT ranking: |(| € [0.7,1] = ‘high’, |¢| € [0.3,0.7) = “medium’, and [{] € [0,0.3)
‘low’. We use this in our AP600 and LOFT studies, the results of which are discussed in

Section 6 on Page 35

As with any statistical computation, it is important to determine the significance of the
calculation, or in other words, it is crucial that we determine whether the correlation coeffi-
cient that we’ve computed is statistically significant. To determine whether the correlation
coefficient is significant, it is common practice to perform inferential statistical tests to
evaluate one or more hypothesis concerning the correlation coefficient. [11, p 946] In our
studies, we utilized the p-value, sometimes referred to as a prob value or the associated
probability or the significance probability[4, p. 18-19], as the inferential statistical test to
evaluate the statistical significance of the correlation coefficient. We considered a p-value
< 0.05 to indicate statistical significance of the correlation coefficient. The null hypothesis,
H,, is: H, : ¢ = 0, p-value < 0.05 = significant evidence that there is correlation between
our two variables. On the other hand, for the same H, if the p-value > 0.05 = we fail
to reject the null hypothesis, i.e. we do not have sufficient evidence that the two variables
are correlated. In our studies, if the p-value was too large, we were unable to make any

conclusions about that phenomena based on its correlation coefficient.

There are many different methods of calculating correlation coefficients. The three we

explore (Pearson, Spearman, and Kendall) are the most frequently used.

13

4.2 Pearson’s Product Moment Correlation Coefficient

The Pearson Product Moment Correlation, denoted by p, is a measure of the linear re-
Cov(X,Y)
ox0y
coefficient (and thus meets all four criteria specified in the section above.) In the bivariate

lationship between X and Y. It is defined as: p(X,Y) = . It is a correlation

normal case, p(X,Y) = 0 = independence of X and Y.

The Pearson Product Moment Correlation Coefficient is the most commonly used measure

of correlation.[11, p 71]

p is invariant under positive linear transformations of the random variables but it is not
invariant under all order-preserving transformations, and requires that the two variables
have a bivariate normal distribution.[11, p. 947] If X and Y are not approximately normally

distributed, then another correlation coefficient should be used.

The most commonly evaluated hypothesis for the PPMCC is: in the population represented

by the sample, the two variables have no correlation.[11, p 945]
The statistic computed for the PPMCC will be denoted by p.

The coefficient of determination is p?, and it represents the proportion of variance on one

variable which can be accounted for by variance on the other variable.[11, p 953]

For X and Y of sample size n, using the notation from section 3.1:
n

n 1 n
1=

=1 =l . [11, p 950].

([54-5 () [[5- (5]

We compute the p-values for the Pearson Product Moment Correlation Coefficient by treat-

P(n —2)
1—p2

>
I

ing t = as coming from a t-distribution with n — 2 degrees of freedom.[10, p

14

18-19]

4.3 Spearman’s Rho

Spearman was developed in 1904 and is a bivariate measure of correlation which is used

with rank-order data.[11, p 1061] Spearman’s is the application of PPMCC to ranked data.

Spearman’s determines the degree to which a monotonic relationship exists between two

variables.[11, p 1062]

The underlying null hypothesis for Spearman’s Rank-order Correlation Coefficient is: in
the population represented by the sample, the correlation between the ranks of the two is

0. [11, p 1063

The sample statistic computed to estimate the value of Spearman’s rho (or Spearman’s r)

will be dentoed by .

For X and Y of sample size n, using the notation from section 3.1 and letting R,; denote

the rank of variable x;, and R,; denote the rank of variable y;:

n 2
6 Z (sz - Ryz)
=1)

()

SAS computes tg by ranking the data and using the ranks in the Pearson formula. When

Ty =1

ties occur, the averaged ranks are used. The p-value for Spearman is computed by treating

€% (n — 2)
1—7¢2

This is the same way the p-value was computed for Pearson, except that ¢ is used in place

t = as coming from a t-distribution with n — 2 degrees of freedom.[10, p 19]

A~

of p.

15

4.3.1 Generic Example of Computing Spearman’s Rho and the Corresponding

P-value

Suppose we have n = 4, and the following points, (z;,y;), within our data:

(0.3,1.5),(0.5,2.5), (0.6, 2.3), and (0.9, 4.6).

Ranking these points, (R, Ryi): (1,1),(2,3),(3,2), and (4,4).

6((1—1)2+(2—3)2+(3—2)2+(0—0)2>
=t =1

=0.8, and t =

4 (42 - 1>
1.88562, and using a table of selected values = p-value = 0.9.

4.4 Kendall’s Tau

Kendall’s tau was developed in 1938 and is a bivariate measure of correlation used with
rank-order data. The population parameter estimate is denoted by 7. The sample statistic

computed to estimate the value of 7 will be represented by 7.

Kendall’s tau measures the degree of agreement between two sets of ranks with respect to

the relative ordering of all possible pairs of subjects/objects.[11, p 1079]

For X and Y of sample size n, using the notation from section 3.1 and letting R,; denote

the rank of variable x; and R,; denote the rank of variable ;.

A pair, (Ry, Ryi) and (Ryj, Ryj) is said to be concordant if (R,; — Ryj)(Ryi — Ry;) > 0, or
discordant if (R,; — Ry;)(Ryi — Ryj) < 0. Let n. denote the number of concordant pairs

of ranks and let ny denote the number of discordant pairs in the ranks. Then 7 is defined
Ne — Ng

as: T =

16

Let t; denote the number of tied x values in the kth group of tied x values, u; denote the
number of tied y values in the Ith group of tied y values, n denote the sample size, and

define sgn(z) as

1, if 2>0

sgn(z) 0, if2z=0

-1, ifz<0
LetT—1 (n—1), th tp — 1), and T —Zlu(u—l)
0—2 d 2k k 2= : gl -

Z (sgn(xi —x;j)sgn(y; — yj))

1<j

Then we can define 7 as: 7 =
V (To —Ty)(To — Tz)

Let s = Y (sgn(z; — x;)sgn(yi — y5))-

1<j
Define the variance of s, V(s), as: V(s) = Gl fg_ L 2n(:1— 0 + 9n(n _112)(” —3)
where vg = n(n —1)(2n + 5), Ztk g — 1)(2t +5), Zul u — 1)(2u; + 5),

o — @ tu(t — 1>> (; w(u — 1>>, and vy — @ tu(t — 1><tk - 2)) (; wpug — 1) (uy — 2)),

We compute the p-values by treating as coming from a standard normal distribution. |10,

VV(s)

p. 20-21]

4.4.1 Generic Example of Computing Kendall’s Tau and the Corresponding

P-value

To illustrate the computation of Kendall’s tau, as well as the corresponding p-value, we will
utilize the same example as was used in the generic example of computing Spearman’s rho

and its corresponding p-value in Section 4.3.1 on Page 16.

17

Suppose we have n = 4, and the following points, (x;,y;), within our data:

(0.3,1.5), (0.5,2.5), (0.6,2.3), and (0.9, 4.6).
Ranking these points, (R, Ryi): (1,1),(2,3),(3,2), and (4,4).

The concordant pairs are: (1,1),(2,2) & (1,1),(3,2) & (1,1),(4,4) & (2,3),(4,4) and
(3,2),(4,4).

The discordant pair is: (2,3),(3,2).

= n.=25and ng = 1.

. 5—1 2
S f=— =

{4(42—1)} 3

If we use the second formula for 7, we get the same result.

s=5b—1=4,t, =0, and u; = 0.

1
T0:§><4><(4—1):6,T1:O,andT2:O.

. 5—1 2
=T = = —.
6-0)(6-0) 3

We can now compute V(s).

Vo=4x(4—-1)x(2x445) =156, v; =0, and v2 = 0.

156 —0—0 26
Ve =" =3

18

L5 4 35873

"

Using a table of values for the standard normal distribution, = p-value =~ 1 — 0.3708 =

0.6292.

4.5 Discussion of Pearson, Spearman, and Kendall

It is recommended that for interval or ratio data in the bivariate case that the Pearson
product-moment correlation coefficient be used, for ordinal or rank order data of bivariate

case that Spearman’s rank-order correlation coefficient or Kendall’s tau be used.[11, p 117]

Pearson is a stronger correlation coefficient® than Spearman or Kendall, but has additional
restrictions, such as the requirement of parametric data.® Spearman’s rho is more commonly
used than Kendall’s tau for two primary reasons. The computations for tau tend to be more
tedious than those completed when calculating rho.”[11, p. 1080] The second reason is that
when the sample is derived from a bivariate normal distribution, Spearman’s rho tends
to provide a reasonably good approximation of Pearson, while Kendall’s tau will not. An
advantage of Kendall’s tau is that it has a sampling distribution that approaches normality
very quickly. Spearman’s rho, on the other hand, needs a fairly large sample size to employ
the normal distribution to approximate the sampling distribution of rho.[11, p. 1080] As a
general rule, |7.| < |t for a set of data, and i — (0.67)2.[11, p. 1080]®

Ts

2 . . - .
In Sections 4.3.1 and 4.4.1 we had 7 = 3 and ¢5 = 0.8, = |7| < |¢|, which follows the

~

general rule. However, % ~ 0.83333 # (0.67)?, yet, it does not disprove the general rule as

s

we just used a generic example which had a very small sample space.

5¢Stronger’ in this case is referring to a higher degree of statistical significance.

SRecall, it specifically requires a bivariate distribution which is approximately normal.

"With the advances in computing, and the introduction of statistical software packages, this has become
less of an issue.

8This is not the case when the value of Spearman’s rho is 1 or —1. In that case, Kendall’s tau will also
be 1 or —1 respectively. This is the same for the case when Kendall’s tau is known to be 1 or —1.

19

5 Experimental Information

5.1 RELAP5-3D
5.1.1 Terminology and Basic Deck Requirements[7, p. Al-1]

Term/Accronym Definition/Description

BE Best-Estimate
Card an 80-character record in the input deck
Card # the first field on the data card. It is an unsigned

integer, and is used to specify the component number
the card supplies information about.

Comment Card identified by a ‘*’ or a ‘$’ as the first nonblank
character. Blank cards are treated as comment cards.
With the exception of printing out their contents,
there is no processing of comment cards.

Continuation Card identified by a ‘4’ as the first nonblank character on

the card, may follow a data card or another
continuation card. Fields on each card must be
completed on that particular card (i.e. a field may not
continue from one card onto the next.)

Data Card contains varying numbers of fields that may be integer
real, or alphanumeric. If a matching card number is
found, the data card that appears last in the deck is
the card that is used.

Input Deck term used to describe the input files

Terminator Card identified by a ‘/’ or a ‘.” as the first nonblank
chearcter. Comments may follow ‘/” or *.” on a
particular card

Title Card identified by an ‘=" sign as the first nonblank
characters and contains no more than 80 characters
including the ‘=’".

Word fields on the data card following the card number, a
word is terminated by comma(s) or space(s). Numeric
words must begin with a digit (0-9) or a sign (+ or -),
or a decimal point.

A RELAP5-3D input deck typically consists of at least one title card, optional comment

cards, data cards and a terminator card.

20

5.1.2 Safety Analysis of NPPs & BE Codes

To ensure safety in the reactor design, operator training, and upgrades to the Nuclear Power
Plant (NPP), Best Estimate (BE) codes are frequently used to model NPPs and to analyze

their safety.

A Best Estimate code is a system code that is capable of predicting/ modeling physical
phenomenon, free of any conservatism regarding selected acceptance criteria, and able to
provide a sufficiently detailed model to describe the relevant processes.[9, p. 193] RELAP5-

3D is the BE code used in this study.

5.1.3 About

RELAPS5-3D is a fully integrated, multi-dimensional thermal-hydraulic and kinetic modeling
program. It is a BE code developed at the INL, which serves as a modeling and simulation
tool to support engineering design and safety analysis of nuclear reactors. It is also used for
non-nuclear fields such as fossil power plants, oil and gas pipelines, municipal steam supply

systems.

5.1.4 Running RELAP5-3D

Upon performing the calculations of the input model, RELAP5-3D produces three output
files: a ‘.p’ file, a “.plt’ file, and a ‘.r’ file. The ‘.p’ file is a printed output file, the ‘.plt’ file
is a plot file, and the ‘.r’ file is the restart file. In our studies, we were primarily concerned
with examining the printed output file. We wrote a Python script, which is described in
Section 5.5 on Page 33. This script locates our desired ouput parameter value from the ‘.p’
file, and then places that value into a parameter value file which is created with the input

modification program described in Section 5.4 on Page 29.

21

5.2 AP600 Deck

Schematic of a Nuclear Power Plant

Containmant
gy bisicing

MNatural convection
air discharge

PGS gravity drain
water tnk

Water film evaporaton

s ool
air intake —H .

Hot water | Pump

:

Figure 3. APGOO Passive Containment Cacling System [1 3]

5.2.1 Background on the AP600 Nuclear Power Plant

The AP600 Nuclear Power Plant (NPP) was designed by Westinghouse as a part of the
cooperative U.S. Department of Energy (DOE) and the Electric Power Research Institute
(EPRI) Advance Light Water Reactor Program (ALWR). [12]

For safety, the AP600 relies on operation of passive systems. The Phenomena Identification
and Ranking Table (PIRT) compiled by Burtt, et al (used in this paper, see the references
section, number [1]) addresses AP600 behavior expected during small break loss-of-coolant,

main steam line break, and steam generator tube rupture accidents. [1]

22

5.2.2 Variable Names, Representation, & Corresponding PIRT[1] Phenomena

Variable Representing Corresponding to (in PIRT) PIRT

Ranking
VAR1 Fission- Core Power High
Product Yield
(i.e.
decay-heat)
VAR2 Roughness Flow Resistance in the IRWST High
VAR3 Form Loss Flow in Accumulator (pressurized High
volume)
VARA4 Form Loss Flow in Accumulator (pressurized — High
volume)
VAR5 Area (ADS-4) ADS Energy Release High
VARG Area (Break Mass Flow in Break’ High
Valve)
VART Area (Orifices) Injection Line - CMT High
VARS Initial Level of Level in CMT High
Pressure
VAR9 Roughness ADS Flow Resistance Medium
VARI10 Roughness ADS Flow Resistance Medium
VARI11 Fouling Factor ~PRHR (Heat Transfer between Medium
PRHR & IRWST)
VARI12 Fouling Factor ~ Steam Generators (Primary to Medium
Secondary Heat Transfer)
VARI13 Roughness PRHR-Flow Resistance # 1 Low
VARI14 Roughness PRHR-Flow Resistance #2 Low
COREMIN Control Minimum Value of the Core N/A

Variable 116 Collapsed Liquid Level 1°

5.2.3 Studies with the AP600 Deck

Using the AP600 deck, we conducted four studies. These studies were based upon the size
of break in the cold leg. Each of the 13 variables'! had three values which were evenly
distributed throughout the interval (i.e. a minimum, a mean, and a max). Variable 6

denoted the size of the break and was used to create the four different studies. To have

9This was used to create the four different studies: 2 inch Break, 4 inch Break, 6 inch Break, and 8 inch
Break.

PCOREMIN is the key output parameter used in the AP600 studies

i e. VARI-5, VAR7-14. VAR 6 was used to vary the break size.

23

every possible combination of variable values, this would mean creating 3'3 = 1,594, 323

input files.

Performing even a single study with 3'2 runs of 400 seconds would require 7,381 days on a
single processor. Even utilizing the INL cluster, described in Section 5.5 on Page 33, which
has 32 cores per node and 12 nodes, it would require 19 days to run the study. There are
many ways to reduce the number of runs in a study. We decided to investigate the use of
grouping our studies into smaller sets to reduce the number of required runs for each study.
We first separated each study into two or three sets. The variables that had correlation
coefficients that were ranked high or medium among the sets would then be grouped together
and run again. Through experimentation, we found that separating the studies into smaller
sets did not significantly affect the calculations of the relative correlation coefficients and

substantially reduced the amount of time needed to run our studies.

The size of the break dictates how long the transient runs. In order to further decrease the
run-time of our studies, we plotted each of the four transients (2 inch, 4 inch, 6 inch, 8 inch)
to determine what the duration of the transient should be for each respective study. The
duration of the transient that was selected for each study encompassed the time when the
collapsed core level reached its lowest height. These plots can be seen in Figures 2, 3, 4,
and 5, respectively.!> We determined that it was effective to run the 2 inch break transient
for 400 seconds, the 4 inch break transient for 200 seconds, the 6 inch break transient for

200 seconds, and the 8 inch break transient for 75 seconds.

The results from the ‘top study’ of each of the cold-leg break studies are presented in

Section 6.1.1 on Page 35.

12¢oremin represents the key output parameter, which is a control variable we created that takes the

minimum of control variable 114 (collapsed core liquid level). Control Output() is the (Percentage of)
Collapsed Core Liquid Level.

24

AP600 2 inch Break AP600 4 inch Break

ap2ins2_00000034 ap4int5_00000138
T T T T T T T T T T T T T
-- Core Collapsed Liquid Level (cntrlvar114)) r --- Core Collapsed Liquid Level (cntrlvar114)
—— Coremin (cntrlvar116) —— Coremin (cntrlvar116)
110+ — 120
2100 B 2100 —
3 \ Y / \‘\ 3 \“’—\
s \ S / S \ \
£ L ' £ AN
I3 \ H o . \ SN
O 9o \ B O 80 NS e
\ "‘ N \i
80— i 60—
L | L | L | L | L S L | L | L | L |
0 100 200 300 400 0 50 100 150 200
Time (s) Time (s)
Figure 2: 2 inch Break Transient Plot Figure 3: 4 inch Break Transient Plot

Our first study that we conducted was on a four inch break. To decrease run-time, we broke
the study into two sets: the first set had only variables 1-5 and 7-8 (i.e. the PIRT-ranked
"high’ variables, note that as stated previously, variable 6 is the break size and thus will
not be adjusted within the 4 inch study) varying, while the other 6 variables were held at
the nominal (or mean) value. The first set was 37 = 2, 187 input files. The second set had
only variables 9-14 (i.e. the PIRT-ranked mediums and lows) varying, while the other 7
variables were held at their respective nominal values. The second set consisted of 3¢ = 729
input files. After both sets were complete, and analyzed using SAS, we created a new study,
which was based on the top 5 most correlated variables from both 4 inch studies: VARI,
VARS8, VARI11, VAR12, and VARI13. Just as before, all five variables varied between the
three values while the other 8 variables were held at their respective nominal values. This

created 3° = 243 input files.

Our second study was on a 2 inch cold leg break. We put this study into three sections (the
other variables are held at their respective nominal values): variables 1-5 varying (2° = 243
input files), variables 7-10 varying (2* = 81 input files), and variables 11-14 varying (2% = 81

input files). After all three sets were analyzed using SAS, we created a new study, based on

25

AP600 6 inch Break AP600 8inch Break

ap6int5_00000029 apins1_000000216
. : . : . 1000 . . : . :
100 -
\ -- Core Collapsed Liquid Level (cntrlvar114)] i --- Core Collapsed Liquid Level (cntrivar114)
90l \‘\ —— Coremin (cntrlvar116) B 800 - —— Coremin (cntrlvar116) |
< 8o N =
E \ - 3 600‘» B
S ok \ i IS L
s s
S \ﬂ\ ; y 5 400 — —
O 60 AN B © l
50— A - 200 - i
(- e
40 ‘ ! ‘ ! ‘ ! ‘ 1 0 ‘ I e ‘ I
50 100 150 200 0 50 100 150
Time (s) Time (s)
Figure 4: 6 inch Break Transient Plot Figure 5: 8 inch Break Transient Plot

the top 4 most correlated variables from the three sets: VAR1, VARS, VAR12, and VAR13.
As with the four inch study, we varied these variables between the three variables, while the

other 9 variables were held at their respective nominal values. This created 3* = 81 input

files.

Our third study was on a 6 inch cold leg break. We split the study into 3 sections, which
were identical to the sections for the 2 inch break study. After the three sets were analyzed
with SAS, a new study was created based on the top 5 most correlated variables from the
three sets: VAR1, VAR7, VARS, VAR12, and VAR13. These were varied as with the 2 inch
and 4 inch break studies: the 5 variables were varied by 3 values, and the other 8 were held

constant at their respective nominal values. This created 3% = 243 input files.

Our final study of the AP600 deck was on an 8 inch cold leg break. As with the 2 inch and
6 inch break studies, we split the 8 inch study into the same sets. After the three sets were
analyzed using SAS, a new study was created based on the top 4 most correlated variables
from the three sets: VAR1, VARS8, VAR12, and VAR13, creating 3* = 81 input files for this

section of the study.

26

In all of the studies, there were variables which had their respective p-value > 0.05. This
does not indicate that these variables were statistically insignificant, or that they were
unimportant to the minimum core level. Rather, it indicates that we cannot make a conclu-
sion regarding their correlation to the minimum core level, and that further investigation is

needed for these variables.

5.3 LOFT Deck

5.3.1 Background Information on the LOFT Nuclear Power Plant

Following the 1988 revised emergency core cooling system rule for LWRs which allows the
use of best estimate plus uncertainty methods in safety analysis, a study was conducted
at the Idaho National Laboratory (INL) based on a cold leg large break loss of coolant
accident test in the Loss of Fluid Test (LOFT) experimental facility. The LOFT facility
was a 50 MW PWR that was designed to model a large break loss of coolant (LBLOCA) in
a commercial pressurized water reactor (PWR). The facility was operational from the late

1970’s to the mid 1980’s.[15]

The input deck used in this study was the same input deck used by G.E. Wilson and
C.B. Davis in their “Best Estimate Versus Conservative Model Calculations of Peak Clad

Temperature: An Example Based on the LOFT Facility” paper (see reference [15].)

27

5.3.2 Variable Names and Corresponding Phenomena [15]

Group Number Variable(s) Representing
1 VARI1-VAR24 Peaking Factor (i.e. core power fractions)
2 VAR 25 Fuel Clad Gap Width
3 VAR26-VARA43 Fuel Thermal Conductivity
4 VAR 44 Clad to Coolant Heat Transfer (i.e. fouling
factor)
5 VAR45-VAR46 Break Discharge Coefficient
6 VARA47T-VAR51 Pump Degradation
n/a Control Variable Peak Clad Temperature 3
234

5.3.3 LOFT Studies

We conducted two studies using the LOFT deck. Both studies values were selected based
upon G.E. Wilson and C.B. Davis’ paper. For both studies, the key output parameter in

the study was Peak Clad Temperature (PCT).

In the first study, each of the six groups of variables had 3 points uniformly distributed
(i.e., minimum, mean, and maximum). All groups used minimum, mean, and maximum for
their three values. However, the variables within each group often had differing maxima,
minima, and means. For example, in group one there were 24 different sets of minimum,
mean, and maximum, yet all variables in the group needed to vary in the same way. For
instance, each of the 24 variables in group one all needed to experience their respective
minimum simultaneously. Likewise, each of the 24 variables in group one had to achieve their
mean simultaneously. Similarly, the 24 variables all experienced their respective maxima

simultaneously. There were 3% = 729 input files in the first study.

In the second study, each of the six groups had 5 different values (i.e., minimum, low-
mean, mean, high-mean, and maximum.) The groups of variables functioned the same way

for the second study as the first study, just with additional values. In other words, for

13peak Clad Temperature is the key output parameter used in the LOFT study.

28

group one, the 24 variables were varied simultaneously, with each variable within the group
experiencing it’s particular low-mean simultaneously. Likewise, each of the 24 variables
experienced its respective high-mean simultaneously. There were 5% = 15,625 input files in

the second study.

The results from both studies with the LOFT deck are presented in Section 6.2 on Page 36.

5.4 Input Modification Program

In order to run the AP600 study and the LOFT study, a Fortran 90© program was created.
This program uses a marked input deck and study specification file(s) to create input files

with input values varying as specified in the specification file(s).

5.4.1 Marked Input File

After an input deck'# and the variables of interest (sometimes referred to as input parame-
ters) as well as the key output parameter have been selected, the user must determine how
these selected input parameters should vary. Once that is determined, the user should create
a ‘spec file’ (or Specification File). Specification Files are discussed in Section 5.4.2. The
base input deck should then be ‘marked’ by the user- this consists of locating the variables
of interest (i.e. card number and word) within the deck, and then placing a ‘§ XXXX’15
in place of the current value on the card in the deck.'® This process should be undertaken
simultaneously with the creation of the ‘spec file’ so as to avoid mistakes. 17 After the base

deck is completely marked, we refer to it as the “marked input deck.”

1476 avoid confusion, we will refer to this input deck as the base input deck.

15X XXX denotes the variable name of that particular input parameter

111 our studies, we selected ‘VARX’ , where X = 1,2, 3, ... to denote the various variables.

" There are very specific parameters for the length of character name, so care should be taken. Details
of this can be found within the main program- see Appendix A for further details. Additional care should
be taken when replacing values as a card may only contain 80 characters, so the user may wish to consider
adjusting spaces within a given card or splitting the card (i.e. making a continuation card.) See reference
[7].

29

5.4.2 Specification Files

The specification file(s) or ‘spec file(s)’, contains all of the necessary information for a given
study. The first line of a spec file indicates the type of spec file it is. There are two types
of spec files: (1) a Generator Specification File and (2) a Node Specification File. These
are discussed in the Subsections 5.4.2(a) and 5.4.2(b) respectively. Both types of spec files
contain: the base name of the files that are generated (this is also the name (without the
extension) of the marked input file), the number of variables in the study, the number of
nodes in the study '®, which node (or set) of this spec file corresponds to, the number
of groups in the study!'?, as well as variable name?’, the minimum value of the variable,
maximum of the variable, standard deviation of the variable, number of variations of the
variable (i.e. number of points for the variable), the distribution type of the variable, and
the group number the variable belongs to?!. A template of a spec file can be seen in

Appendix B on Page 51.

4.5.2(a) Generator Specification File A “Generator Specification File” or “generator
spec file” is a spec file with generate on the first line of the spec file. When combined with
the executable produced by the input modification program, described in Section 5.4.3, it
produces a specified number of node spec files, each of which has a different node number??.
The node number corresponds to the INL cluster node, where each node has multiple cores.

The INL cluster is discussed more in Section 5.5 on Page 33. To see an example of a

18The ‘number of nodes’ refers to the number of studies within the study. i.e. We break each study into
multiple sets (or studies) so that it is easier to run the study on the cluster. This is discussed in greater
detail in Section 5.5.

9The ‘number of groups’ refers to the number of variables that vary INDEPENDENTLY within the
study- i.e., in our LOFT studies, we had variables which had to vary simultaneously (dependently). For
instance, variables 1-24 all varied simultaneously, variable 25 varied independently, variables 26-43 varied
simultaneously, variable 44 varied independently, variables 45-46 varied simultaneously, and variables 47-
51 varied simultaneously, so we had 6 groups. In the case of the AP600 studies, all 14 variables varied
independently and so the number of groups was equivalent to the number of variables, 14.

29Note that the ‘$’ is not written into the spec file- though it is marked that way in the marked input file.
The ‘$’ is appended within the main program, see Appendix A for more information.

2lie. VAR1-24 in LOFT study are in group 1, and so a 1 is written in that variable’s line.

22Using the notation from the template spec file in Appendix B, the specified number of spec files is
#nodesInStudy, and the node number corresponds to ‘currentNode’.

30

generator spec file, see Appendix C on Page 52.

The motivation for generating separate node spec files was cluster supercomputer limita-
tions. Generating thousands of input files on a single processor, then moving them to the
nodes where they would run ties up communication resources need for other data flow and
can seriously impair performance. It is far more efficient to generate the RELAP5-3D input

files on the nodes where they will run, thereby eliminating all such input file movement.

4.5.2(b) Node Specification File A “Node Specification File” or “node spec file” is
a spec file with run on the first line of the spec file. When combined with the executable
produced by the input modification program, described in Section 5.4.3, it produces the
input files corresponding the particular node number of the node spec file. To see an

example of a node spec file, see Appendix D.

5.4.3 Main Program

The main program, input_mod_gen.f90, is included as Appendix A on Page 40. Its purpose
is to create an entire statistical study by generating input relating to a PIRT analysis. It

has three purposes:

1. Interpret the “generator specification file” and create a number of “node specification

files.”

2. Produce all RELAP5-3D input files for a given node of the cluster supercomputer

from the “node specification file” and a single RELAP5-3D input template file.

3. Handle the situation where a group of input parameters vary together (are 100%

correlated).

The main program is run first to create a node specification file for each cluster node; a node

may have up to 32 cores that can each run RELAP5-3D independently and simultaneously.

31

The creation of the node spec files from a generator spec file is done through the command

line prompt:

input_mod_gen.exe -1 generator_spec_file_of_my_study

This creates the corresponding node spec files and these node spec files are exported to
each node along with a copy of the template input file. The main program is run on each
node to produce the specific input files of the statistical study, and is run on the cluster
via a Python script which is described in Section 5.5 on Page 33. The complete set of
possible combinations of input values can be ordered as a set of n-tuples. The set of n-
tubles is generated by a recursive algorithm and therefore works for any number of input

parameters.

The ordinal number of the n-tuple that is used to generate an input file is assigned as the
input file’s sequence number and becomes part of its name. Concatenating its sequence
number to the base name of the statistical study forms its name. All input files have
a unique name, regardless of the node on which it runs. The input files are created by
copying the template input file then substituting the variable values corresponding to its
n-tuple into the input file for that variable’s marker. Markers had the form $VAR1, $VAR2,
... $VARK. When some variables are 100% correlated, K is larger than n (the size of the

n-tuples).

The values of the correlated variables are varied together. For example, if group one has
20 variables and a uniform distribution with 3 “levels” in use, namely minimum, mean,
and maximum value, the group counts as one variable in the first position of the n-tuple
previously discussed. The group has three levels: minimum, mean, and maximum. How-
ever, when an input file is generated, the particular “maximum value” of each variable is
substituted for its marker (§VAR1 through $VAR20). Input files are created on node 3 with

the following command:

32

input_mod_gen.exe -1 node3_spec_file_of_my_study

. The number of input files generated is a function of the number of groups and the number
of value levels within the group. For example, if group 1 has 6 variables and 3 levels, group
2 has only one variable with 8 levels, and group 3 has 9 levels, there would be 3 * 8« = 216
combinations in the entire statistical study. The program determines the number of input

files that are created by each node spec file based upon the #nodesInStudy (combSet in

of Input Files in Study
#nodesInStudy

study had 6 groups of variables, each with 5 values for a total of 15,625 runs. Splitting these

program) by taking the celing function of { } The second LOFT

runs among 9 node spec files placed 1736 runs each on nodes 1-8 and 1737 runs on node 9.

5.5 Running on the Cluster & Python Scripting

Studies were run on one of the INL’s supercomputers, Quark, which has 12 nodes. Users

submit jobs, such as our statistical studies, via a batch queuing system.

Due to limited resources particularly on moving large amounts of data from the head node
to computational nodes, it is much more efficient to generate the input files on the node as

explained in Section 5.4.3 on Page 31.

The Python scripts are included in Appendix E on Page 53. It runs the main program on
the head node of the cluster, moves the node specification file onto the cluster’s computation
nodes, runs RELAP5-3D in parallel on the input files, collects the output from the RELAP5-
3D output files, and plaes it in a “study output file” on the line corresponding the input’s
n-tuple. These files are ported back to the head node and are then combined into a single

“study output file.”

Thereafter, SAS can be used to perform the statistical analysis.

33

5.6 Using SAS®

Once all of the res files have been created, as described in Section 5.5, we copy them
into the local desktop, relabeling the files’ extensions as ‘.csv’ (as opposed to ‘.res’), and
adding an additional line to the beginning of the file which typically looks like ‘runNum-
ber,VAR1,VAR2,VARS,.....KEYOUTPUT’. We then import each file into SAS, a statistical
software package. We used the SAS package, SAS EnterpriseGuide 4.3, which offers a
graphical user interface of SAS 9.2. We then combined the res files from all of the nodes
into one data set, through utilization of the ‘append table’ feature, “tasks \ data\ append
table”. We then calculated the correlation coefficients using the correlation coefficient func-
tion, “tasks \ Multivariate \ Correlation Coefficient”. We selected the variables as analysis
variables, and correlated them with the key output parameter. The options we selected
were Pearson, Hoeffding, Kendall, and Spearman, and we included the Pearson correlation
options of covariances, sums of squares and crossproducts. These produced SAS reports,

which are found in Appendix F. We were then able to rank the variables accordingly.

34

6 Results

6.1 APG600 Studies

6.1.1 AP600 Correlation Coefficient Classification

Break High ¢ Medium (Low (¢
2 inch Core Power PRHR-Flow Resistance # 1 (PIRT Low)
(PIRT High)
4inch Core Power
(PIRT High)
6 inch Core Power SG-Heat Transfer (PIRT Medium)
(PIRT High)
Level in CMT
(PIRT High)
PRHR-Flow
Resistance #1
(PIRT Low)
8 inch? Core Power SG-Heat Transfer (PIRT Medium)

(PIRT High)
Level in CMT
(PIRT High)

6.1.2 Discussion of the Rankings of the Phenomena

All variables which were not listed in Section 6.1.1 had their respective p-value > 0.05.

In the 2 inch and 4 inch studies, the findings were as we expected based upon the PIRT

recommendations. In the 6 inch and 8 inch studies, there were some surprising results.

In the 6 inch study, two PIRT-ranked ‘highs’ had a correlation coefficient classifications of

‘medium’, and a PIRT-ranked ‘medium’ had a low correlation coefficient classification, of

particular interest was that one PIRT-ranked ‘low’ had a medium correlation coefficient

classification. In the 8 inch study, we saw a similar ranking pattern to that of the 6 inch

study, with the exception being that all rankings in the 8 inch study were less than those

of the PIRT, specifically, none of the rankings of the correlation coefficient classification

23In the 8 inch break, the average of the correlation coefficients for the various phenomena were used. In
the other studies, the three correlation coeffients were in agreement. The exact correlation coefficient values
can be found in the SAS® Reports in Appendix F on Page 58.

35

were greater than that of the PIRT. The rankings we saw in the 6 inch study (and in the
8 inch study) which were less than or equal to the PIRT rankings do not cause too much
concern as the PIRT was conservative, i.e. if the panel was unsure as to whether something
should be ranked as ‘high’ or ‘medium’, they ranked it as ‘high’. The result that surprised
us was the phenomena in the 6 inch study which was ranked higher than the PIRT ranking

in terms of correlation coefficients.

6.2 LOFT

6.2.1 LOFT Correlation Classification

Classification Group Name(s)
High ¢ Fuel Clad Gap Width
Medium (Clad to Coolant Heat Transfer & Peaking Factor
Low (Break Discharge Coefficient & Fuel Thermal Conductivity
p-value > 0.05 Pump Degradation

6.2.2 Ranking the Phenomena Following the Correlation Computation

After completing the correlation analyses for the LOFT study, we were able to numerically
rank the phenomena from 1-5, with 1 representing the variable which was most strongly
correlated with PCT and 5 being the variable which was least correlated with PCT. From
an engineering perspective, we would rank the phenomena by absolute value of the change
in PCT from the minimum value to the maximum value of the phenomena. To approximate
that computation, we held the other phenomena at their respective nominal values. ~ At
corresponds to the approximate change in temperature when we compare the PCT of the
minimum value of the variable to the PCT of the maximum value of the variable, where
all other variables are held constant at their respective nominal values. The following table

presents the rankings:

36

Rank Phenomena ~ At (Rank by ~ At)

1 Fuel Clad Gap Width 200 (1)
(G2)

2 Clad to Coolant Heat 80 (3)
Transfer (G4)

3 Peaking Factor (G1) 50 (4)

4 Break Discharge 90 (2)
Coefficient (G5)

5 Fuel Thermal 45 (5)

Conductivity (G3)

The ranking by correlation coefficients almost matches the ranking we get by considering
At- with the exception being that group 5 should be ranked number 2, and then the others
would adjust accordingly. This seems to demonstrate that ranking using the correlation
coeflicients is fairly reasonable. Additionally, it may be worth noting that by the Apendix
K ruling of the NRC, all of these correlation coefficients change in temperature would require

that these phenomena be ranked ‘high.’

7 Final Conclusions and Potential Future Work

Overall, in the AP600 studies, we found that Core Power was the dominating input pa-
rameter which most strongly affected our key output, but found that the significance of the
variables after that were largely dictated by the break size. For the most part, we found
that our statistical rankings were generally the same or less than the PIRT ranking, with
the exception of VAR13 in one transient (the 6 inch break.) This makes sense as the PIRT
was conservative, i.e. if the experts doing the ranking were unsure as to whether or not a
particular phenomenon was medium or high, they tended to rank it high. With regards to
the one odd case of the variable 13 ranking medium in the 6 inch break, this indicates that
we should further examine this variable and phenomenon. It may be that changing this
variable actually relates to another phenomena not covered in the PIRT, or that this par-
ticular variable is more complex than we originally thought. One of the limitations of our

study is that we cannot be sure how accurately our variables represent the phenomena. We

37

were limited by what quantities it made sense to adjust, as well as the fact that there were
cases where we were unable to easily select variables to vary to correspond to phenomenon.
In any case, the study does demonstrate great potential for further studies, in particular in

applications to other PIRT analyses.

In the LOFT studies, we found that fuel clad gap width was most strongly correlated with
the PCT, and interestingly enough, found that the pump degradation seemed to have no

relation to Peak Clad Temperature.

Through utilization of PIRTs and statistical methods, we believe that a more accurate

uncertainty analysis can be performed.

Further studies may demonstrate that the utilization of statistical methods may improve
upon the accuracy of PIRTs produced by a panel of experts. Other future work may utilize
the concepts of sampling reduction techniques to vary a greater number of parameters which
maintaining a relatively small run-time for studies. Additional improvements to the input
file generator may include the addition of the ability for the user to specify a larger number

of distributions for the values of various variables.

Aknowledgements

This work is indebted to many. The authors wish to thank and acknowledge the following

individuals and organizations for their contributions to this project:

Dr. Jodi Mead, of the Boise State University Department of Mathematics, for her support

of this project, and her willingness to serve as the University’s advisor of this project.
The International RELAPS5 Users Group (IRUG), for funding this work.

The INL’s RELAP5-3D team, for their continued support and advice. Many thanks are

owed specifically to the RELAP5-3D team’s Paul Bayless and Cliff Davis for their assistance

38

and guidance regarding phenomena.

The Idaho National Laboratory and Boise State University’s Department of Mathematics,

for their support of this work.

References

1]

[3]

[8]

J.D. Burtt, C.D. Fletcher, G.E. Wilson, C.B. Davis, and T.J. Boucher. "Phenom-
ena Identification and Ranking Tables for Westinghouse AP600 Small Break Loss-
of-Coolant Accident, Main Steam Line Break, and Steam Generator Tube Rupture

Scenarios.” INEL-94/0061. November 1996, Revision 2. 3, 5, 22, 23

Christopher Chatfield, “Statistics for Technology.” 3rd Edition. Chapman and Hall:

New york, 1985. 9, 11

W.J. Conover, “Practical Non-Parametric Statistics.” 3rd Edition. John Wiley & Sons,

Inc: New York, 1999. Pages 312-313. 11

J.D. Gibbons and S. Chakraborti, “Nonparametric Statistical Inference.” 3rd Edition

Revised and Expanded. Marcel Dekker, Inc: New York, 1992. 13
http://notrickszone.com /wp-content /uploads/2011/03 /nuclear-power-plant.jpg 22

T. J. Olivier and S. P. Nowlen, “A Phenomena Identification and Ranking Table (PIRT)
Exercise for Nuclear Power Plant Fire Modeling Applications.” NUREG/CR-6978,
1998. Pages: iii, 1. 7

RELAP5-3D Manual (Volume 2, Appendix A: RELAP5-3D Input Data Requirements,
Ver 3.0.0 Beta) 3, 20, 29

Yigal Ronen, “Uncertainty Analysis.” CRC Press: Boca Raton, 1988. 6

39

©OTDU A WN -

[9]

F. D’ Auria, H. Glaeser, S. Lee, J. Misak, M. Modro, and R. Schultz. “Best Estimate
Safety Analysis of Nuclear Power Plants: Uncertainty Evolution.” Safety Report Series
No 52, 2008. 21

SAS Institute Inc 2010. “Base SAS(©)9.2 Procedures Guide: Statistical Procedures,
Third Edition.” Cary, NC: SAS Institute Inc. 15, 17

David J. Sheskin, “Handbook of Parametric and Nonparametric Statistical Proce-

dures.” 3rd Edition. CRC Press: Boca Raton, 2000. 9, 12, 13, 14, 15, 16, 19
http://ap1000.westinghousenuclear.com/ap1000_background.html 22
http:/ /upload.wikimedia.org/wikipedia/en/e/ef/ AP600PassiveContainment.jpg 22

G. E. Wilson and B. E. Boyack, “The role of the PIRT process in experiments, code
development and code applications associated with reactor safety analysis.” Nuclear

Engineering and Design 186 (1998) 23-37. 6

G.E. Wilson and C.B. Davis, “Best Estimate Versus Conservative Model Calculations
of Peak Clad Temperature: An Example Based on the LOFT Facility.” Ninth Inter-
national Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9). San
Francisco, California: October 3-8, 1999. 3, 27, 28

Appendices

A

Input Modification Program

program input_mod
1

ICOGNIZANT: Alexandra E. Gertman

!CREATED: 2/22/2012

IUPDATED: 5/02/2012

!

PROGRAM DESCRIPTION :

! This program was created to generate many input files with varying
! parameters (i.e. phenomena or variables).

!

! The program generates an executable (a.out) upon compilation.

!

! The executable (a.out) is combined with a marked input file as

40

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

!
!
1
!
1
1
1
!
1
!
!
!
!
!
!
!
!
!
!
!
1
!
!
1
1
1
!
!
!
!
!
!
!
!
!
!
!
1
1
!
!
1
1
!

!
!
!
!
!
!
!
!
1
1
1
!
!
1
1
1
1
!
!
!
!
!
!
!
!
!
!
!
!
1
1
1
1
!
!
!
!
!
!
!
!
!
!

11,

well as a study specification file (spec file) to create the
new input files.

A spec file includes:

—if the spec-file should generate new spec_files OR
if it should generate input files

—the base name of each generated input file

(base name also serves to indicate the name of

the marked input file)

—the number of variables

—the number of jobs the combinations will be split
into

—which set of combinations this particular spec_file
will generate

—the number of groups of wvariables

(there are some cases when variables MUST be changed
simultaneously — in those cases, those variables
will all be grouped together)

—the name of each variable

—variable information such as distribution which
allow the program to make necessary calculations
to calculate the values each variable in the

spec file should experience, as well as the group
number each variable belongs to.

The executable will produce a file containing the run information
(run_-layout) which specifies the number of input files that will
be built in each of the ’input file generator’ spec files.

If the spec file is a ’spec file generator’ spec file , when
compiled with the executable, it will create ’input file
generator ’ spec files (the number of which is specified in the

’spec file generator’ spec file.

If the spec file is an ’input file generator’ spec file , when
compiled with the executable, it will create new input files
based upon the marked input file and the specifications in

the spec file itself. Once compiled using the executable, it
will create a comb file (which it writes to as it creates each
of the input files) that contains all of the ’run information’
for each of the input files being generated .

IPROGRAM OUTLINE :

Initialize variables, obtain and bypass the name of the executable file ,
and read the command line option.

Open the files .
2.1 Open spec_file — a file that has info about the study.
2.1.1 Read spec_file and the following information:
2.1.1.a. Whether the spec file is an ’input file generator’ OR
a ’'spec file generator.’
2.1.1.b. BASE Name for the input files
2.1.1.c. Number of wvariables , number of ’input file generator
spec files that will be used in the study (i.e. njobs), which
particular ’input file generator’ the spec file is (i.e.
combSet), and the number of groups of variables in the study.
2.1.1.d. Name of each variable (as it is marked in the file — except
for the ’$’— that is added immediately after the data is
read—in. i.e. 'VARI’ becomes ’'$VARI1’.)

5

2.1.1.e. Minimum and Maximum values of each variable

2.1.1.f. Standard Deviation of each variable

2.1.1.g. Number of data points within the range

2.1.1.h. Probability function name (uniform , nromal, lognormal,).

NOTE: Currently only uniform is available.
2.1.1.1i. Group number each variable belongs to.
2.1.2 Calculat the number of possible combinations, and create an array based on
and nposscombs which specifies which runs will take place on each combSet.
2.1.3 Create the file run_layout. Write nposscombs on line 1, and then write the

number of combinations in each combSet onto line 2. The file is then closed.

2.1.4 Based on the first line of the spec_file, one of 3 things will occur:

(1) If the spec_file’s first line says ”generate” send to the subroutine
spec_-gen. spec_gen will generate njobs of spec_files which have ”run”
instead of ”generate” and have different combSet numbers. i.e. only
the first two lines of the newly generated spec_-files will differ

from the original spec_-file. Once generation is done, program will
terminate .
(2) If first line doesn’t say ’run’ or ’generate’, program will terminate.
(3) If the first line is “run”, the program will execute normally. i.e.,

Follow the remainder of the outline.
2.2 Name of marked_input_file is created.
2.3 Open marked_input_file

Generate input files
3.1 Calculate the variable values for each interval with ’uniform
3.1.1 Calculate the interval length and increment size

> distribution .

41

njobs

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

3.1.2 Use the probability function , minimum, interval length ,
and increment size to calculate all the values the variable

will
3.2 Input file

have and save these in an array.
generation through loops and subroutines.

3.2.1 Make columns an array of ones (of size ngroups.)
3.2.2 Open var_val_comb (i.e. comb file)

3.3 Input file

name generation and input file creation through subroutines.

.3.1 Generate a file names based on combination number or var value.
For example: ’edhtrk99’ vs ’edhtrk-11.3_.3 .

3.3.2 Call

the subroutine index_-gen to generate all the files.

—As each file is generated, the run number (i.e. comb_number) and

the values for each variable in that particular run/input file will
be written to the comb file.

Close all files (with the exception of file 8, fileName, which is closed in the
subroutine copy-_file or the subroutine spec_gen).

Data Dictionary

baseFileName

charCombNum

charCombSet

char_i

charlen

charvalu

columns

comb_number

= a character (of size 10) indicating the name of RELAP5-3D
input file , will serve as beginning letters of all generated
input files. Additionally , it will serve as the beginning of
the name of the file var_val_comb.

= a character (of size 8) which is a character conversion of
the combination number of the run so that each line in the
combination file starts with the run number for the
specific combination of wvariables. It is a local variable
in the recursive subroutine index_gen. It is padded with 0’s
to ensure that each run is EXACTLY 8 digits.

= a character of size 3 which is the character conversion of
combSet. It is used so that the spec_file can be appended with
the number corresponding to the set of combinations the spec
file needs to generate. It’s a local wvariable used in the
subroutine spec_gen. It’s also used in the main program to
make the comb file specific to the combSet.

= a character (of size 8) which is a character conversion of
columns (l:nvar) or (a character conversion of the combination
number of the run) so that newFile can be appended with each
particular variable’s corresponding index for that
combination. It is a local variable used in the subroutine
name_gen, and is padded with 0’s to ensure it each name is
baseFileName XXXXXXXX , where XXXXXXXX is EXACTLY 8 digits.

= a local integer in subroutine var_finder which is used to store

the character conversion of the length of a particular var(i).

It is used to re—write line with the variable value substituted

in place of ’$VARX’.

a local variable (of size 12) in subroutine var_finder which is

the character conversion of valu. It allows valu to be appended

to the file name.

= an array of integers (of size nvar— originally set to 55) which
stores the indices of variables in any given combination.
columns (j) corresponds to jth value of variable j.

= an integer indicating the combination number a particular
generated input file corresponds to.

combSet = an integer of size 3 indicating which particular set of
combinations the given spec_file will need to generate.

ex = logical flag indicating existance of spec_file and
marked_input_file.

exfile = a character of size 10 indicating the name of the executable
file (usually a.out unless otherwise specified at run time for
input-mod.f90. NOTE: if the executable is changed, the user is
advised to make corresponding changes to the python script
(run_xxxx.py) if tests will be made on the INL cluster.

flag = a character of size 2. It is entered by user after executable file.
If flag is not ’—i’ program will send error message to user and quit.

found = a logical variable, used in the subroutine copy-file to test whether
or not ’$VAR’ occured in the line (card) being copied in copy-file.

genRun = character of size 10’ which should be either ’run’ or ’generate ’.
It is found on the first line of the spec_file and if genRun is
’generate’ the program will call the subroutine spec_gen. If it’s
’run’ then the program will run normally.

groupNumb = integer array of size 55 which stores the group number of each var.

i = integer used in various arguments (i.e. getarg, do loops, etc).

ierr = integer used to detect an input error in reading the spec_file ,
marked_input_file , fileName (subroutine copy-file and subroutine
spec-gen), and var_val_comb files .

increment_size_var = array of real numbers indicating the size of increment each

colindex
int_length_var

is

job_inc

particular variable value will increase by.

= integer indicating the index of a particular column. It is used in
if statements in the subroutine indexgen

= array (of size 55) of real numbers indicating the size of the
range of the values for each particular variable.

= integer used to denote the number of command line arguments when
the executable file is run (usually a.out is the executable)

= integer used in various arguments (i.e. do loops, etc.)
= real number which is used to determine the number of jobs that
should be in each combSet. (i.e. job_inc = nposscombs/njobs).

42

188 ! line = a character (of size 132) which is used in the subroutine copy-_file
189 ! to store each string of text from the marked_input_file and then is
190 ! used to write the same string into fileName. It is then passed to
191 ! the subroutine var_finder which searches line for the variable

192 ! markers (ex: $VAR1). If it does contain the specific variable

193 ! marker, var_finder will make the variable/value substitution , and
194 ! pass line back to the subroutine copy-file. It is also used in the
195 ! subroutine spec_-gen to read in some of the spec_file lines.

196 ! marked_input-file = character of size 25 which corresponds to the name of the input

197 ! file which has been ”marked” or contains flagsindicating where the
198 ! variables are that will be replaced with the values generated by
199 ! this program. It is used as a template for generating new input

200 ! files .

201 ! maxpts = array (of size 55) of integers which indicate the maximum number
202 ! of points in any variable’s range.

203 ! mn = array (of size 55) of real numbers indicating the minimum value
204 ! for each particular variable.

205 I mx = array (of size 55) of real numbers indicating the maximum value
206 ! for each particular variable. Also used locally in subroutine

207 ! spec_gen

208 ! nameGenType = a character (of size 4) indicating whether the user would prefer
209 ! to generate names based on the total number of combinations

210 ! (’comb’) or the number of values for each variable (’var’).

211 ! Ex: ’ed3htrk_-99’ vs ’ed3htrk_11.3_.3"~

212 ! newFile = a character (of size 80) which corresponds to the name of the new
213 ! file which is generated by the subroutine name_gen

214 ! ngroups = an integer indicating the number of groups of variables within a
215 ! given file. To be more explicit, there are cases in which entire
216 ! groups of variables must be changed SIMULTANEOUSLY, and those

217 ! variables will be ’grouped’ together. e.g. if vars 1—4 must change
218 ! simultaneously , var 5 changes independently , vars 6—12 change

219 ! simultaneously and var 13 changes independently then there are

220 ! 4 groups.

221 ! nposscombs = integer indicating the total number of combinations that exist for
222 ! writing one value for each variable (i.e. this will indicate the
223 ! number of input files which will need to be generated.)

224 ! npts = array (of size 55) of integers indicating the number of values

225 ! each variable will have.

226 ! nruns = array (of size 55) of integers which indicate the number of runs
227 ! which are in each combSet. (i.e. nruns(2) = the number of runs in
228 ! the 2nd combSet. The number of generated files will be

229 ! nruns (combSet) — nruns(combSet—1).)

230 ! nvar = integer indicating the number of variables which will be replaced
231 ! in the marked_-input-file. Also used in subroutine spec-gen.

232 ! originalFile = a character (of size 10) which is used by the subroutine name_gen
233 ! to denote the file which will be copied.

234 ! prob = array (of size 55) of characters (of size 8) which indicate the
235 ! type of probability distribution that will be used to determine
236 ! where the points in the interval for each variable will be.

237 ! run_layout = the name of the file containing the run information (i.e the

238 ! number of combinations and the number of files created for each
239 ! of the combSets. It is a character of size 10.

240 ! runLayout = an array of size 55, which holds information about the number of
241 ! runs that are in each combSet. It is written to the file run_layout
242 ! and then utilized by the python script.

243 ' sp = a character of size 1 (7 ”7) used locally in the subroutine var_finder
244 ! to add an extra space in the line (card) after the value of the variable
245 ! is inserted AND to add an extra space to the variable name. This prevents
246 ! the program from replacing ’$VARI11’s values with ’$VAR1’s values, as well
247 ! as preventing errors in value replacement— previously , errors occurred
248 ! as ’'$VARX’ would replace correctly , but ’$VARXY’ would add a 'Y’ to the
249 ! beginning of the value replacement.

250 ! spec_file = character of size 20 which corresponds to the name of the file

251 ! which contains information about each of the variables which are
252 ! going to be replaced in the marked_input_file. This information

253 ! includes baseFileName, combSet, genRun, mn, mx, npts, nruns, nvar,
254 ! stdev, and var. If genRun = ’generate’ spec_file is used as a

255 ! template for the generated spec files and serves as a base for the
256 ! naming scheme of the newly generated spec files.

257 ! stdev = array (of size 55) of real numbers indicating the standard

258 ! deviation of each variable.

259 ! val = array of real numbers (of size (20,55)) which corresponds to

260 ! val(i,j) = value i of variable j from spec_file formula.

261 ! valu = an array of size nvar which holds the specific array of values

262 ! for a generated combination of variables and values (i.e.

263 ! valu(j) = val(columns(j),j)). It is created in the subroutine

264 ! index-gen and then passed to the subroutine copy-file, and then to
265 ! the subroutine var_finder so that these values are plugged in for
266 ! the specific variable in a particular copyFile.

267 | ! wvar = array (of size 55) of characters (of size 8) denoting each

268 ! variable name

269 ! var_val_comb = character of size 20 indicating the name of the file created that
270 ! contains all the nposscombs of values of the different variables.
271 ! In the file , column 1 corresponds to the values of variable 1,

272 ! column 2 corresponds to the values of variable 2, etc. Each row
273 ! represents a different combination (i.e. nposscombs rows and nvar
274 ! columns)

43

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

where = an integer corresponding to a local variable in subroutine
var_finder which holds the value returned by the index function
(either a 0’ or a ’1’) which indicates if the variable flag
(ex: $VAR1) is within a particular line.

files

file unit number = file name

1 = spec-file (opened and closed in input-mod, utilized in the
subroutine spec_gen if genRun = ’generation ’.)

2 = marked_input_file (opened and closed in input_-mod, read in
the subroutine copy-file.)

3 = var_val_comb file (opened and closed in input-mod, written
in the recursive subroutine index_gen.)

8 = fileName. This is the file which is a copy all of information
from the marked_input_file or the information for spec_file if
genRun = ’generate . (It is opened, written, and closed
in the subroutine copy-file, or in the subroutine spec_gen.)

9 = run_layout. This is the file which contains the information about

the runs it allows the user to double check that the comb files
generated contain the correct number of runs. The first line is
nposscombs. The second line is the array runLayout, with each
integer in the array being size 4. It was originally created to
be used in the python script, but we ended up not using it in
that capacity.

program/subroutine names and descriptions
name = description

copy-file = subroutine which is called by index_gen. It is passed (and
returns) fileName, var, nvar, and valu. It is used to generate
a copy of a marked input deck. In order to substitute in correct
variable values, it calls the subroutine var_finder.

index_gen = recursive subroutine called by input_-mod. It is passed (and
returns) baseFileName, index, columns, maxcolumn, nvar,
nposscombs, val, var, comb_number, and nameGenType. It
recursively generates all of the possible combinations of
variables and values. It calls the subroutines copy-file (which
calls var_finder) and name_gen to generate all of the
input decks for a particular ”"input generator” spec file.

input-mod = main program. It opens (and saves information from) spec-_file.
It generates the points for a uniform distribution, and it
calls the recursive subroutine index_gen to generate the
files corresponding to the variable/value combinations unless
the first line of the spec file is ’generate’ in which case,
the program will call spec_gen to generate all of the ’input

generator ’ spec files.
name_gen = subroutine called by index_gen. It is passed (and returns)
originalFile , columns, nvar, newFile, comb_number, and

nameGenType. It is used to generate a newFile name which
indicates the particular variable value combination of the

file being created/copied if nameGenType = ’var’, otherwise
nameGenType = ’comb’ and the generated name will correspond to
which combination number the file corresponds to.

spec-_gen = subroutine which is passed (and returns) spec_file, genRun,
baseFileName, nvar, and combSet. It is called by the main program
if genRun = ” generate”. It will create njobs specfiles which have
the first line changed to ’run’ as opposed to ’'generate’, so that
when these new spec files are run, they will call index_gen and
are able to generate the new input files. Additionally , it will
generate njobs of them, each of which will have a different
combSet value. (e.g. if njobs = 9, then one file will have combSet=1,
one file will have combSet=2, ..., one file will have combSet=9.)

var_finder = subroutine which is passed (and returns) line, var, nvar and valu.
It is called by copy-file, and uses the above information to find

the VARIABLE MARKERS in the file and substitutes the desired values
into the line and then passes the edited line back to copy-_file.

INFORMATION FOR THE USER:

1. THE MARKED INPUT FILE AND SPEC FILE (VARIABLE NAMING) :
Add a ’$’ to the beginning of EVERY variable name in your marked input file
(i.e. template input file). In the SPEC FILE, place the variable WITHOUT the
’$° (i.e. in MARKED INPUT '$VAR1’ in SPEC FILE ’VAR1’) as a ’'$’ is added in
in the main program immediately following the read statement (see sec 2.2.1).

2. VARIABLE NAMES:
In the program, variable names are set to be of size 8. HOWEVER, due to the
addition of ’$’ to the beginning of the variable name (see #1 directly above)
and due to the SPACE added to the end of the variable name (see the subroutine
var_finder for a more detailed explanation) variable names MUST be no more
than 6 CHARACTERS LONG.

3. NUMBER OF VARIABLES OCCURING WITHIN A CARD:
Currently ONLY 7 instances of variables may appear in a given line (regardless

44

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

of which variables— it could be the same variable multiple times plus a few
others, or all one variable, or all different variables a single line, i.e.
card , may only have 7 substitutions). For more details, see the subroutine
var_finder .

CASE OF A VARIABLE WITH A SINGLE POINT (i.e. stays constant):

In the SPEC FILE, simply write the value the user desires to remain constant
for that variable in the place where the MIN (i.e. mn) should go.

MAX NUMBER OF RUNS:

Currently ONLY runs of up to 8 digits long are permitted. To change this, and
for additional information see NOTE in recursive subroutine index_gen.
MAXIMUM NUMBER OF VARIABLES SPECIFIED in SPEC FILE:

Currently a spec file can ONLY contain information for 55 variables. To
change this, the user will need to change the size of several arrays:

prob (XX), var(XX), columns(XX), groupNumb (XX), npts(XX), nptsGroup (XX),

nruns (XX), runLayout(XX), increment_size_var (XX), int_length_var (XX),
mn(XX), mx(XX),stdev (XX), val(20,XX), as well as in a write statement

[write (9, ’(XXi4)’)]. Additionally , changes should be made in the

recursive subroutine index gen: val(20,XX), and 62 format (a8 ,XXesl2.4)

ALSO should more than 99 variables be in a given file , additional changes will
need to be made in var_finder. See the subroutine for further details.

Declarations

implicit none

character %10 baseFileName, exfile, genRun, run-layout
character %3 charCombSet

character %2 flag

character *25 marked_input_file

character *4 nameGenType

character %8 prob(55), var(55)

character *20 spec_file, var_val_comb

in
in
lo
re
re

teger combSet, comb_number, i, ierr, is, j, k, maxpts, nposscombs, ngroups, njobs ,
teger columns(55), groupNumb (55), npts(55), nptsGroup(55), nruns(55), runLayout(55)

gical ex

al increment_size_var(55), int_length_var(55), mn(55), mx(55), stdev(55), val(20,55)

al job_inc

Executable code

1

.0 Initialize

comb_number = 0
genRun = ’hello’
i =0
j =0
maxpts = 1
nameGenType = ’type’
nposscombs = 1
var_val_comb = ’s’
1.1 Obtain and bypass the name of the executable file
call getarg (i, exfile)
is = iargc ()
1.2 Read the command option
i =1
call getarg (i, flag)
if (flag(1:2) == ”—i”) then
i =2
call getarg (i, spec-file)
else
write (*,*) ”Error:_no_—i_was_specified”
stop 7—-1”
endif
2.0 Open the files

2.1 Open spec_file
inquire (file = spec_file, exist = ex)
if (.not. ex) then
write (*,*) ”Error:_file_not_found,.”, spec_file
go to 100
endif
open (unit = 1, file = spec_file, action = ”"read”, status = ”o0ld”, iostat = ierr)

2

.1.1 Read the spec-file and save the relevant variable information. Then rename
each variable to include marker (i.e. ’$7).

read (1, ”(al0)”) genRun
read (1, ”(al0,i3,i3,i3,i3)”) baseFileName, nvar, njobs, combSet, ngroups

do

i = 1, nvar

read (1, 7 (a8,.3el12.4,.i3,_.a8,.i3)”, end = 10) var(i), mn(i), mx(i), stdev(i), npts(i),&

prob (i), groupNumb(i)

var(i) = 787 // trim(var(i))

end do
10 continue
rewind 1

45

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

2.1.2 Calculate the number of possible combinations, and create an array based on njobs
and nposscombs which specifies which runs will take place on each combSet.

For example: if there are 27 possible combinations, and njobs = 3, then
nruns() = [3 6 9], so we know combinations 1-3 will take place if combSet = 1,
combinations 4—6 will take place if combset = 2, and combinations 7—9 occur when
combSet = 3. Since the ceiling function is wused, any number of njobs may be used
without concern for the case where mnjobs does not evenly divide nposscombs. In
that case, we will just have a different number, i.e. +4/— 1, of runs generated
in one of the ’input deck generator’ spec files.)
k=1
nptsGroup (1) = npts (1)
do i = 1, nvar
if (groupNumb(i) /= groupNumb(k)) then
k =k + 1
nptsGroup (k) = npts(i)
endif
end do

uncomment the line below to write out the group number of each variable
write (*,7(20i4)”) groupNumb

nposscombs = 1
do i =1, ngroups
nposscombs = nptsGroup(i)*nposscombs

end do
job_inc = (nposscombs)/(njobs)
do i = 1, njobs-—1

nruns (i) = ixceiling (job_inc)
end do
nruns (njobs) = nposscombs

2.1.3 Open the file ”"run_layout”. It will be used by the python script.

For the file, we’ll print out the number of possible combinations

(i.e. the total number of tests). Then we’ll calculate exactly how
many runs are expected for each of the nodes (i.e. for each combSet),
and then write that onto the second line. (each will be of size 4).
Note: npossCombs will be of size 12. The file will then be closed.

run-layout = ”"run_layout”
open(unit =
write (9, 7 (i
runLayout (1) =
do i = 2, njobs

(i)

9, file = run_layout, action = ”"write”, status = ”replace”, iostat = ierr)
1

2)”) nposscombs
nruns (1)

runLayout (i) = nruns(i) — nruns(i-—1)
end do
write (9, ’(55i4)’) runLayout(l:njobs)

close (unit = 9)

2.1.4 Based on genRun, program will follow one of three options.

(1) If spec-file is a spec_file with a genRun= ”generation”, send the spec_file
to the subroutine spec_gen which will generate njobs of spec_files. (first if)
(2) If spec-file’s genRun is not equal to "run” program will terminate
(3) Otherwise, execute normally, utilizing the subroutine index_gen.
if (trim (genRun) == ’generate’) then

call spec_gen(spec_file , genRun, baseFileName, nvar, njobs, combSet, ngroups)
go to 100

elseif (trim(genRun) /= ’run’) then
go to 100

endif

2.2 Use the baseFilename as the marked_input_file

marked_input_file = trim (baseFileName) // ’.i’
2.3 Open the marked_input_file
inquire (file = marked_input_file, exist = ex)
if (.not. ex) then
write (%,%*) 7Error:_file_not_found,.”, marked_input_file

go to 100
endif
open(unit =2, file = marked_input_file, action = ”read”, status = ”o0ld”, iostat = ierr)

3. Generate input files.
3.1 Calculate the variable values for each interval with ’uniform’ dist

3.1.1 Calculate the interval length and increment size

do i = 1, nvar
int_length_var (i) = mx(i) — mn(i)
if (npts(i) <= 1) then
increment_size_var (i) = 0.0
else
increment_size_var (i) = int_length_var (i)/(npts(i)—1)

46

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

!
!

endif

end do
3.1.2 Calculate each value within the interval for eac
Note: val(rownumber = point in interval , column
do i = 1, nvar
do j = 1, npts(i)
val(j, i) = mn(i) 4+ (j—1)*(increment_size_var(i))
end do

uncomment the line below to write out all the values
write (*,%) ”Values for variable 7, trim(var(i)), ”7:

end do
maxpts = 1
maxpts = maxval(nptsGroup)

3.2 Input file generation through loops and subroutine

3.2.1 Make columns an array of size ngroups with all 1’

columns (1:ngroups) = 1

h

specific variable.
variable).

for each variable

»

S .

s

val (1:npts(i),i)

(ones) inside

3.2.2 Open var_val_comb , and make the name specific to the combSet by
appending that

writing a character version of combSet and then

to the trimmed version of baseFileName and the string

write (charCombSet, ’(i3)’) combSet
charCombSet = trim (charCombSet)

” _comb” .

var_val_comb = trim (baseFileName) // ”_comb”// adjustl(charCombSet)

»

open(unit = 3, file = var_val_comb, action = ”write”, status = ”replace”, iostat

3.3 Input file name generation and file creation throu

gh

subroutines .

3.3.1 Generate file names based upon the number of combinations of
variables and values or based on the possible values of each

variable. nameGenType has two values ’comb’ and
Ex: ’edhtrk_-99’ for ’comb’ vs ’edhtrk_11.3_.3" fo
nameGenType = ’comb’

‘var .

r

'var ’

3.3.2 We call the subroutine index_gen. It, in turn, will call the subroutines
subroutine var_finder).
index_-gen will generate all of the possible combinations of input variabl

name_gen and copyfile (copyfile will then call t

and will create all of the input files for the specific

he

spec file by using name_gen and copyfile/var_finder.

call index_gen (baseFileName, ngroups, columns, nptsGroup,
comb_number, nameGenType, nruns, combSet, groupNumb)

nvar , nposscombs, val,

4. Close the spec_file, marked_input_file, and var_val_comb file
close (unit = 1, status = ”keep”)
close (unit = 2, status = "keep”)
close (unit = 3, status = "keep”)

100 stop

contains

recursive subroutine index_gen (baseFileName, colindex, columns, maxcolumn, nvar,
var , comb_number, nameGenType, nruns, combSet, groupNumb)

1

1
1
1
1
1
1
!
!
!
!
!
!
!
1
!
!
1
1
1
1
1
1
1
!
!
!
!
!
!
!

AUTHORS: Dr. George L. Mesina and Alexandra E. Gertman
CREATED: Mar 02, 2012
UPDATED: Apr 18, 2012

RECURSIVE SUBROUTINE DESCRIPTION :

Recursively generate an colindex (columns) which corresponds to the
matrix of variable values. (i.e. val(columns(j), j) corresponds to
the column(j) value of variable j.) Then call the subroutines
name_gen and copy-file (copy-file will also call var_finder) to

generate the corresponding input file names and files.

CAUTION::

Note that combSet == 1 is handled differently than combSet > 1!
if changes must be made to the lines written to the combfile,
user should ensure that changes are made to the case when

combSet == 1 AND combnumber > nruns (combSet —1).

NOTE:

comb_number (specifically the character version of comb_number,
charCombNum) is not currently able to handle comb_number > 8 digits.
if user wishes to change this, changes need to be made to several

places:
i index_-gen
(i)

1. size of character charCombNum in declarations

of local vars from %8’ to ’xX’

2. in write statement where comb_number is written to
the charCombNum ’(i8.8)’ to ’(iX.X)’ for BOTH elseif

cases .
3. in format 62 and 87 change ‘a8’
(ii) name_gen

47

to

PaX

’input file generator

= ierr)

es
)

var ,&

nposscombs ,

val ,&

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709

Declarations

Arguments
implicit none

character %10 baseFileName
character *4 nameGenType
character %80 newFile
character %8 var(x)
integer columns (%), groupNumb(nvar), maxcolumn(*), nruns(*)
integer combSet, comb_number, colindex, nvar, nposscombs
real val(20, 55)
1
! Local Variables

integer i, j
real valu(nvar)
character %8 charCombNum

! Initialize
newFile = baseFileName
! Executable Code

if (colindex == 1) then
do i = 1, maxcolumn (1)
columns (1) = i
do j = 1, ngroups
where (groupNumb == j) valu =

end do
comb_number = comb_number + 1

! if (comb_number > 6) stop

val(columns(j),:)

! Remove line above to generate more than 2 input files .
if (comb_number > nruns(combSet)) then
stop
elseif (combSet == 1) then

call name_gen(baseFileName ,columns (l:nvar),nvar,newFile,
call copy-file(newFile, var, nvar, valu)

write (charCombNum, ’(i8.8)°) comb_number

write (3,62) charCombNum, valu(l:nvar)

from

1. size of char_.i in declarations to %X’
2. in the write statement where comb_number
char_i, the format should be changed

P(iX.X) 7.

is written to
’(i8.8) 7 to

comb_number ,nameGenType)

62 format (a8, 55esl12.4)

! write (3,621) charCombNum, (columns(j),j=1,ngroups)

! uncomment line above (and below) to write the index of each group for each run
! 621 format (a8, 55i3)

elseif (comb_number > nruns(combSet—1)) then
call name_gen(baseFileName ,columns (l:nvar),nvar,newFile,
call copy-file(newFile, var, nvar, valu)
write (charCombNum, ’(i8.8)°’) comb_number
write (3,62) charCombNum, valu(l:nvar)

comb_number ,nameGenType)

! write (3,621) charCombNum, (columns(j),j=1,ngroups)
! uncomment line above (as well as the format line) to write the index of each group
! for each run
endif
end do
else
do i = 1, maxcolumn(colindex)
call index_gen (baseFileName, colindex —1, columns, maxcolumn, nvar, nposscombs, val,&
var ,comb_number, nameGenType, nruns, combSet, groupNumb)
columns(colindex) = columns(colindex) + 1
end do
if (columns(colindex) > maxcolumn(colindex)) then
columns(colindex) = 1
endif
endif
if (comb_number > nposscombs) then
stop
end if
return
1
end subroutine index_gen
1
1
subroutine copy-_file (fileName, var,nvar,valu)
1
! CREATED: Mar 6, 2012
! UPDATED: Apr 11, 2012
1
! SUBROUTINE DESCRIPTION :
! Make (i.e. open and write to) a copy of the marked—up input file
! with the generated name. Then call var_finder to modify fileName
! so it’s variable values correspond to the file name. Also appends
! the file name to include ’.i’
1
1

Declarations

48

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
T
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796

! Arguments

! Arguments
implicit none
character %80 fileName
character %8 var(x)
integer nvar
real valu(x)

! Local Variables
character %132 line
integer ierr
logical found

! Executable Code

open (unit = 8, file = fileName,
status = ”"replace”, iostat = ierr)
do

read (2, 7(al32)”, end = 999)

found = index (line, "$VAR”) > 0

action = "readwrite.”, position = "rewind” ,&

line

call var_finder (line ,var,nvar,valu)

write (8, ”"(a)”) trim(line)

if (found) then

end if

end do

999 continue
close (unit = 8)
rewind 2

return

end subroutine copy-file
!

UNCOMMENT the text below to

the subroutine var_finder and

write (*,x) ”Copy File

print out the line that was al
written into the NEW input file .

line = 7, line

1

subroutine name_gen(originalFile ,columns,nvar,newFile,

1

CREATED: Mar 7, 2012
UPDATED: Mar 19, 2012

SUBROUTINE DESCRIPTION :

|

!

!

!

! Creates name for input files
! nameGenType = ’var’, otherwise
1

1

1

1

1

be based on the base name
Declarations

Arguments

implicit none

character *4 nameGenType
character %80 newFile
character %10 originalFile
integer columns(l:nvar)
integer comb_number, nvar

! Local Variables
character *8 char_i
integer j

! Executable Code

newFile = originalFile

if (nameGenType == ’comb’) then

and

based on base name AND variable

nameGenType = ’comb’ and the
combination number the var/val

write(char_i, ’(i8.8))comb_number
newFile = trim (newFile) // 7.7

else
do j = 1, nvar

//trim (adjustl (char_i))

write(char_i, ’(i2)’) columns(j)

newFile = trim (newFile) //

end do
endif

newFile = trim(newFile) //
return

end subroutine name_gen

s

L

’

»

»

// trim(adjustl(char_-i))

49

comb_number ,

tered by

s if

name generated
to.

corresponds

nameGenType)

will

797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

!
!

subroutine var_finder (line ,var,nvar, valu)

!
1
1
1
1
1
1
!
!
!
!
!
!
1
1
!
!
1
!
1
1
1
1
1
!
!
!
!
!
!
!
!
!
!
1
1
!
1
1

CREATED: March 07, 2012
UPDATED: April 12, 2012

SUBROUTINE DESCRIPTION :
Find the lines in the input file which contain a variable MARKER
(i.e. '$VAR1’) and then replace the MARKER with the desired value.

NOTE:

The variable name can have a double digit number, so special care
must be taken when forming the new line to prevent part of the

name from appearing in the new line. To handle this case, an
additional SPACE has been added to the END of the value replacing
the marked variable in the line. THIS could potentially cause errors
in input processing as it may cause there to be too many characters
on a card in the new input file.

LET THE USER BEWARE:

Currently , this subroutine is set to account for up to 7 occurences
of a variable within a single card (line) in the input deck.

IF more occurences exist in the user’s modified deck, CHANGE the
outermost do—loop from 1 to 7 TO 1 to X (greatest number of
instances of variables occuring on a single card (line) in the marked
input deck.

ADDITIONAL WARNING :

ALL VARIABLES ($XXXXXX, where XXXXX is input by the user) are PADDED
with a SPACE (i.e. from ’$XXXXX’ to ’'$XXXXX ’ within this subroutine)
so as to ENSURE that the program will not read in variables such as
"$VAR1’ and ’'$VARI11’ (assuming the user puts them in sequentially in
the spec file) and then replace all '$VARI1’s values with '$VAR1’s
values. The user should also be aware that we insert an extra space
in the line immediately following the value insertion. If the user
should have more than 99 variables , it is recommended that an extra
space be inserted for each additional digit of nvar (e.g. for 2000,
add two extra spaces, for 999 add one extra space.)

Declarations

Arguments
implicit none
character %132 line
character =8 var(x)
integer nvar

real valu (x)

Local Variables

integer charlen, i, j, loc
character %12 charvalu
character =1 sp

Executable Code

sp = 7"
do j =1, 7
do i = 1, nvar
loc = index (line, trim(var(i)) // sp)
if (loc .ne. 0) then
charlen = len_trim (var(i))

write (charvalu,”(esl12.4)”) valu(i)
UNCOMMENT the text below to check which variable and value is being
substituted into a particular line. NOTE that it will print out EACH
occurence of the wvariable being replaced.

write (*,%) "Var Finder : var(i) = var (i), i

write (*,%) "Var Finder : line before = 7, line

»

line = line (1l:loc—1) // charvalu // sp // line(charlen+loc+1:)
write (*,%) ”Var Finder : line after = 7, line
endif
end do
end do

return

end subroutine var_finder

!
!

subroutine spec_gen(spec_file , genRun, baseFileName, nvar, njobs, combSet,

!

!
!
!

CREATED: Mar 15, 2012
UPDATED: Apr 18, 2012

50

ngroups)

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947

[B R I \V)

!

1
1

SUBROUTINE DESCRIPTION :

Create njobs specfiles which have the first line changed to ’run’
as opposed to ’'generate’, so that when these new spec files are run,
they will call index_gen and actually generate the new input files.

Declarations

Arguments

implicit none

character *10 baseFileName, genRun
character %20 spec-file

integer combSet, ngroups, njobs, nvar

Local Variables
character %3 charCombSet
character %20 fileName
character %132 line
integer i, ierr, j

Executable Code
do i = 1, njobs

combSet = i
write (charCombSet, ’(i3)’) combSet

fileName = trim(spec-file) // ’-’ // adjustl(charCombSet)

fileName = trim (fileName)

open (unit = 8, file = fileName, action = “readwrite.”, position = “rewind”,&
status = ”"replace”, iostat = ierr)

read in the first two lines of spec_file. At this point, we won’t be
doing anything with them, but after we read them in, we’ll be all set
to read in the rest of the lines (and print them out) in a loop.

read (1, 7(al32)”, end = 999) line

read (1, 7(al32)”, end = 999) line

write the first two lines of the new spec_-file— replacing ”generate” with
”run” and changing the combSet number appropriately.

write (8, ”(a3)”) ”run”

write (8, 23) baseFileName, nvar, njobs, combSet, ngroups
23 format(alO, i3, i3, i3, i3, i3)

999 continue

now we read in the rest of the lines from file 1 and write with no
modifications onto the spec_file we’re generating.

do j = 1, nvar
read (1, ”(al32)”, end = 99) line
write (8, ”"(a)”) trim(line)

end do

99 continue

rewind 8

close (unit = 8)
rewind 1

end do

return

end subroutine spec-gen

end program input_mod

B Template Spec File

typeOfSpecFile
baseFileName #vars #nodesInStudy currentNode #groups

varX min max stdDev #pts distribution group#

51

—
© 00 N O Ot ke W NN = SO © 0w g O Ot ks W NN =

—
o

C Example of a Generator Spec File

stdDev #pts

distribution group#

generate
apsbs
VARI1
VAR2
VAR3
VAR4
VARSH
VARG
VART7

VARS

8 9 6
0.9
0.000135
10.63287
0.036252
0.14688
0.078534
0.000135
.504811

1.1

o O

0.000165

12.99573 1.

0.044308
0.17952

0.095986
0.000165

o o o o o

0.616991

.1
.000015
18143
.004028
.01632
.008726
.000015
.05609

D Example of a NodeSpec File

W W W W W w w w

uniform
uniform
uniform
uniform
uniform
uniform
uniform

uniform

[=2 B 1 B S OV \V]

run
apsbs
VARI1
VAR2
VAR3
VAR4
VAR5
VARG
VAR7

VARS

0.9
0.00135
8.95959
0.043749
0.193752
0.04419
0.000135
.19493874

1.1
0.00165
10.95061
0.053471
0.236808
0.05401
0.000165

o o o o o o o o

0.23825846

.0471404520
.0000707106
.4692879144
.0022914973
.0101483965
.0023145962
.0000070710
.0102105559

52

W W W W W w w w

uniform
uniform
uniform
uniform
uniform
uniform
uniform

uniform

o N O Ot ke W N

©OTDU A WN -

E Python Script for Running Studies on INL’s Supercom-

puter, Quark

#!/apps/local /python/activestate /2.7.1.4/bin/python

Purpose:
Note:

Run many input decks
Pure Python script ,
To adjust this
main program ,
keyOutputString)
to adjust the walltime
study .

Dr. George L
J. Shelley
Mar 16, 2012
May 02, 2012

no
section
Authors: Mesina ,

Created:
Updated :

FddR I I R R IR

Pro Batch Scheduler
#PBS —N relapb
#PBS —1
#PBS —1
#PBS —1
#PBS —V
#PBS —j
#PBS —q
#
" Ly m
#
1.0 Imports
import glob, os
from tempfile import mkdtemp
import shutil , subprocess, sys
from string import join
import time
try:
import forkmap as fm
FORKMAPavail ”yes”
except Exception, e:

FORKMAPavail = "no”

(PBS)
place=excl
walltime=10:00:00

oe
general

e

from
run_file

1.0
accordingly .

Alexandra E.

many directories with
of Linux scripts or
your particular test,
and adjust the file names
The user also encou

to better fit the use

use

for go

is
request

Gertman

commands

select =1l:ncpus=12:mpiprocs=12:mem=23gb

T i
def CreateDirs (curPath ,outPath, filePre , tmpPath):

Make

cases

directories where each

be run

the
will

#
#
#

tmp._dir = mkdtemp(prefix=filePre ,

return tmp-_dir

def GetInputFiles(inputPre):

#
Grab all of files (each of which
Then return all of those files.
Note: inputPre = specFilePre + °’
inputPre = inputFilePre%”«*"
#

inputs = glob.glob(inputPre)

return inputs
I

I Ly

def PrepRunGetClean (index, currentPath, relap_exe, tmpPath):
#
Runs each input file passed to it (using relap executable rund).
Currently , only 12 input files are run at a time (since we’'re running
our tests on quark.) If a different number should be run through each
time, appropriate changes should be made in the parallel section, as
as in the beginning lines of this program (the PBS —1 select line).
#

cmd = "%s %s” %(relap_exe ,index)

output = subprocess.Popen(cmd, shell=True,stdout=subprocess.PIPE).communicate ()[0]

print >> sys.stderr, ’cmd:._.’, cmd

return

Ly
7

" I o
if __name_._. == ’__main__":
DESCRIPTION: Create working directory in temporary—space with subdirs
one per cluster node. Run input-mod_gen.f90 to create 1
spec—file for each subdirectory by dividing the total no.
of combinations equally among the cluster —nodes. Copy the

node’s (or combSet

')

dir=tmpPath)

is named inputPre) from our
*’ for specFiles AND
for inputFiles

53

RELAP5—3D
commands .

to
(and
raged

r’s

current path.

82 | # license and template input files , RELAP5-3D, and tpfh2o

83 | # to each subdirectory. Use input-mod_gen.f90 to generate

84 | # all input files for the node from template input file.

85 | # Find and store key output parameter value from each

86 | # RELAP5—3D output file along with the sequence number of

87 |# the file.

88 | # When all runs are finished , SAS will be used to

89 |# analyze the statistics.

90 | #

91 |# COGNIZANT: Alexandra E. Gertman, Dr George Mesina, Jon Shelley

92 |# CREATED: Mar 16, 2012

93 |# UPDATED: Mar 27, 2012

94 | #

95 [# PROGRAM OUTLINE:

96 |# 1.0 Initialize and set—up directories

97 |# 1.1 Construct & Populate subdirectories

98 | # Construct subdirectory structure explained above

99 | # 1.1.1 Change the current working directory to currentPath

100 | # 1.1.2 Collect all of the spec files we’ll use in this study.

101 | # 1.1.3 If the directory (tmpPath) does not yet exist, create it.

102 | # Then create the directory which will hold all of the runs

103 | # for each combSet (i.e. for each node).

104 |# 1.2 Obtain list of computer nodes

105 |# 1.3 Input file generation

106 | # 1.3.1 Switch the current working directory to tmp-run_dir

107 | # (i.e. the temporary directory)

108 | # 1.3.2 In each temporary directory , create a link to the needed files:
109 | # the RELAP5-3D executable (rund), relap5.x, its license and property
110 | # files , and the appropriate specfile.

111 | # 1.3.4 Collect all of the input files.

112 |# 2.0 Output file generation through parallelization

113 |# 2.1 Run Parallel: All of the input files that were

114 | # generated will be run with the relap executable.

115 | # 2.1.1 Grab 12 of the input files at a time, passing them

116 | # to the function PrepRunGetClean where the output

117 | # for those 12 input files will be created.

118 |# 3.0 Results

119 |# 3.1 Collect the newly generated output files

120 | # 3.1.1 Create a results dictionary where we’ll store

121 | # the run number and the corresponding desired

122 | # output parameter.

123 | # 3.1.2 Loop through output files to find the key output

124 | # parameter , and then put that value into the results

125 | # dictionary along with the corresponding run number

126 |# 3.2 Find the file with the variable information for each

127 | # run, copy that information and put into a new file ,

128 | # appending the run information with the desired output

129 | # from the results dictionary. Then save the results file

130 | # to the current directory.

131 | # 3.2.1 Open and read the comb file for this particular combSet/node

132 | # 3.2.2 Create the list outline.

133 | # 3.2.2.1 Loop through each line of combLine

134 | # 3.2.2.1.1 Split each line in each of the combFiles

135 | # 3.2.2.1.2 Append each line with it’s corresponding result
136 | # 3.2.2.1.3 Place modified cline into the list outline

137 | # 3.2.3 Save all of outline to res_text.

138 | # 3.2.4 Open combFile.res, write all of res_text to it, then close the file.
139 | # 3.2.5 Copy the file to the folder ’results’ in the home directory

140 |# 4.0 Remove temporary directory and exit program

141 | #

142 | # DATA DICTIONARY :

143 |# array-idx = array of cluster nodes. Should correspond to the number of
144 | # jobs specified in spec file. (3rd word on line 2 of the
145 | # spec file.)

146 |# cline = variable denoting each specific line in combLine. It is
147 | # stripped and split , appended, and then put back together.
148 | # cmd = variable which denotes arguments we’ll be passing to the
149 | # command line .

150 |# combFile = name of the comb file for the particular combSet/node.
151 | # It is combFilePre with arry_idx.

152 |# combFilePre = base name for each comb file.

153 | # For ex: ’apsbs2_comb ’. No additional string w/in a string
154 | # is specified.

155 |# combLine = where each line of the combFile is stored (each line is a
156 | # string .)

157 |# combn = the run number of cline

158 |# currentPath = PBS working directory .

159 |# data = where the information for an output file is stored.

160 |# inputFilePre = base name used in all of the input files.

161 | # For example: ’apsbs_%s.i’, where the %s indicates that we
162 | # will specify a what string will get placed in between the
163 | # underscore and the ”7.1i”

164 |# index = variable used to denote 12 different strings (each of which
165 | # corresponds to a specific input file.) It is used in the
166 | # parallel section, and passed to PrepRunGetClean so that each
167 | # of the 12 input files will be run with rund.

168 |# inputFiles = all of the generated input files (i.e. spec files which contain

54

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

run’ as their first word on line 1) we’ll be using in this

study. To get all of these files , we call the function
GetInputFiles, and pass it the string specFilePre + ’=x

»

fixd = line in data which contains keyOutputString

keyOutputParam = the number in fixd which corresponds to the key output parameter
we are grabbing from the output files.

keyOutputString = string which occurs right before the key output parameter
value in the ’.p’ relap file.

markedInputFile = name of the marked input file input-mod-gen.f90 uses as a
template for generating all of the input files.

output = the results generated from running each of the input files with
the relap executable (rund).

ouputFilePre = base name used in all of the output files. It functions in
the same way as the inputFilePre, except it’s a ’.p’ file.

outFile = ecach individual output file (from outputFiles)

outputFiles = the generated output files are all stored here. They are
outputFilePre % "= .

outline = list which stores each line of combLine (and appends each of
the lines with the corresponding result from res_dict.)

outputPath = location of output files

relap_exe = name of the relap executable (i.e. how we’ll run relap for
each particular input file.)

res_dict = results dictionary. Items in the results dictionary are stored

as run number and then corresponding key output parameter
generated for that particular run.

For ex: [’00000044°:°69.5519°, ’00000045°:°69.5519°, ...]

resFile = where the results file is opened, written to (res_-text is
written into the file), and closed.

resultsFile = name of the results file (combFile + ’.res’)

res_text = file where the list outline is written to.

runtime = a call (in parallel section) to the function controller ,
passing in all of the input files (12 of them at a time).

specFilePre = base name of the spec file (NOTE: this is not the spec file
generator— rather it is the generated copies which contain

run’ as the first word on line 1 of the spec file.)
Unlike the input/output pre it doesn’t include a string
within a string.

specFiles = all of the generated spec files (i.e. spec files which contain
run’ as their first word on line 1) we’ll be using in this
study. To get all of these files , we call the function
GetInputFiles , and pass it the string specFilePre + ’x’.

start2 = floating point representation of time (used to denote when
each set of 12 input files is run with RELAP.) It is used in
the parallel section, in the function controller.

tmpPath = location on temporary disk for the RELAP5-3D code and input

tmp_run_dir = temporary directory where each node’s (or combSet’s) particular

case will be run. It calls the function CreateDirs() to create
each particular directory by passing currentPath, outputPath,
as well as the specFilePre+str (arry_idx)+’—’, and tmpPath)

R o o o o o A o o o e e R O R R R R h R ok b ol i b h i i R L SR oh 1 o h i

I

¥k

IR

7 T 117

1.0 Initialize and set—up directories
arry-idx = int(os.environ [PBS_ARRAY_INDEX’])
currentPath = os.environ [’PBS.O.WORKDIR]

tmpPath = ” /tmp” 4 os.sep + ”rbstats” 4+ os.sep
outputPath = currentPath 4+ os.sep + ”Output” 4+ os.sep
inputFilePre = 71oftTS_%s.i”

outputFilePre = 71oftTS_%s.p”

keyOutputString = "pct e stdfnctn”

specFilePre = ”"loftTS_gen.”

markedInputFile = ”loftTS.i”

relap_exe = ” /home/gertae/hpc—runs/rund”

combFilePre = ”loftTS_comb”

print >> sys.stderr ’arry_idx:.’,arry_idx

print >> sys.stderr
print >> sys.stderr
print >> sys.stderr

’currentPath:_’ ,currentPath
’tmpPath:_’ ,tmpPath
’outputPath:_’ ,outputPath

1.1 Construct & Populate subdirectories
Construct subdirectory structure explained above

1.1.1 Change the current working directory to currentPath
os.chdir (currentPath)
print "CWD:._” ,os.getcwd ()
print ”1s:_” ,os.listdir (os.getcwd ())

1.1.2 Collect all of the spec files we’ll use in this study.
specFiles = GetlnputFiles(specFilePre+ %)
print ”Spec_Files:_” ;specFiles
1.1.3 If the directory (tmpPath) does not yet exist, create it.
Then create the directory which will hold all of the runs
for each combSet (i.e. for each node).
if os.path.isdir (tmpPath) == False:

55

256 os . mkdir (tmpPath)

257 tmp_run_dir = CreateDirs(currentPath, outputPath, specFilePre+str(arry_idx)+’—’ ,tmpPath)
258 | #

259 |# 1.2 Obtain list of computer nodes

260 | # Each node has a number of cores

261 nodes = open(os.environ['PBS.NODEFILE’], 'r’).readlines ()

262 numNodes = len (nodes)

263 print ”Number_of_threads:_” ,numNodes

264 | #

265 |# 1.3 Input file generation

266 | #

267 | # 1.3.1 Switch the current working directory to tmp_run_dir
268 | # (i.e. the temporary directory)

269 os.chdir(tmp_run_dir)

270 | # 1.3.2 In ecach temporary directory , create a link to the needed files:
271 | # the RELAP5—-3D executable (rund), relapb5.x, its license and property
272 | # files , and the appropriate specfile.

273 for Infile in [’rund’,’relap5.x’,’tpfh20’,’rellic.bin’, specFilePre+’%d ' %arry_idx ,
274 markedInputFile]:

275 cmd = ’lno—s %s/%s % (currentPath ,Infile)

276 print “cmd: _%s”%cmd

277 output = subprocess.Popen(cmd, shell=True,stdout=subprocess.PIPE).communicate ()[0]
278 | # 1.3.3 In each temporary directory , create the command to
279 | # run the executable from input-mod_gen.f90 (a.out),
280 |# passing it '—i’ (necessary for executable to work),
281 # and specFilePre arry_-idx.

282 cmd = currentPath+tos.sep+’a.out—i.%s%d’%(specFilePre ,arry_idx)
283 print ”cmd: %s”%cmd

284 output = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True).communicate ()[0]
285 | # 1.3.4 Collect all of the input files .

286 inputFiles=GetIlnputFiles(inputFilePre%” x”

287 #inputFiles = inputFiles[:12] #Uncomment for smaller test

288 print inputFiles

289 | #

290 |[# 2.0 Output file generation through parallelization

201 |#

292 | #

293 |[# 2.1 Run Parallel: This is where all of the input files that
294 | # were generated will be run with the relap executable rund.
295 | #

296

297 ## Parallel section

298

299 | # 2.1.1 Grab 12 of the input files at a time, passing them
300 | # to the function PrepRunGetClean where the output

301 | # for those 12 input files will be created.

302 @fm. parallelizable (12)

303 def controller (index):

304 print >> sys.stderr, ’index=’,index

305 start2 = time.time ()

306

307 PrepRunGetClean (index , currentPath, relap_exe, tmp_run_dir)
308

309 return time.time() — start2

310 runtime = fm.map(controller ,[x for x in inputFiles])

311

312 ## End Parallel section

313

314 #

315 | #

316 |# 3.0 Results

317 | #

318 |# 3.1 Collect the newly generated output files

319 outputFiles = glob.glob(outputFilePre%’ *’)

320 print ?Output_Files:_.” ,outputFiles

321 | # 3.1.1 Create a results dictionary where we’ll store

322 | # the run number and the corresponding desired

323 | # output parameter.

324 res_dict = dict ()

325 | #

326 | # 3.1.2 Loop through output files to find the key output

327 | # parameter , and then put that value into the results
328 | # dictionary along with the corresponding run number
329 for outFile in outputFiles:

330 data=open(outFile).read ()

331 fidx = data.rfind (keyOutputString)

332 keyOutputParam = (data[fidx:fidx+80]).split ()[2]

333 #print "%s Coremin: %s”%(outFile , pct)

334 res_dict [outFile.split(’-")[1].split(’.’)[0]]= keyOutputParam
335 print ”Results_Dictionary:\n” ,res_dict

336 | #

337 |# 3.2 Find the file with the variable information for each

338 | # run, copy that information and put into a new file ,

339 | # appending the run information with the desired output

340 | # from the results dictionary. Then save the results file

341 | # to the current directory.

342 | #

56

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

¥ O

3 I HHRHRH® 3

R S

3.2.1 Open and read the comb file for this particular combSet/node
print "Have_not.yet._found_Comb_File”
combFile=combFilePre+str (arry_idx)
print ”Found_Comb_File”
combLine=open (combFile). readlines ()

3.2.2 Create the list outline.
outline = list ()

3.2.2.1 Loop through each line of combLine
for cline in combLine:

3.2.2.1.1 Split each line in each of the combFiles
cline = cline.strip ()

cline = cline.split ()

3.2.2.1.2 Append each line with it’s corresponding result

try:

combn = cline [0]

cline .append(res_dict [combn])
except:

cline .append(’noResults’)

3.2.2.1.3 Place modified cline [joined w/commas and w/ a
’\n’ at the end of the line to indicate a new

line for each result] into the list outline
outline.append(”,”.join(cline) + ”\n”)
3.2.3 Save all of outline to res_text.
res_text = join(outline,’_’)
3.2.4 Open combFile.res, write all of res_text to it, then close the file.

3

resultsFile=combFile4+’ . res
print " Results_File(s):.”, resultsFile
resFile = open(resultsFile , ’w’)
resFile.write(res_text)
resFile.close ()

3.2.5 Copy the file to the folder ’results’ in the home directory
shutil.copy(resultsFile ,currentPath)

4.0 Remove temporary directory and exit program
try:
print ”Remember_to_clean_up—-after _.the_run”
shutil.rmtree (tmpPath)
except Exception, e:
print >> sys.stderr, e

print >> sys.stderr, ”"Error_occurred_while_removing_temporary._directories”
#
print >> sys.stderr, ’'Node_%i_runtimes_(sec):\n_o_Max_%f,\n__Min_%f,\n__.Avg_ %f,\n_Tot %f_ %\
(arry_-idx ,max(runtime),min(runtime) ,sum(runtime)/len (runtime) ,sum(runtime))
print >> sys.stderr, "For_” ,len(runtime),” _runs”
RunTime = time.time() — Runstart2
print >> sys.stderr, ”Total_run_time_=" ,RunTime

57

F SAS Reports

F.1 AP600 2 inch Break, Top 4 Variables

Thursday, April 12, 2012 4:18 PM 1

Correlation Analysis
The CORR Procedure

[1 With Variables: [coremin
‘4 Variables: |VAR1 VAR8 VAR12 VAR13

SSCP Matrix
VAR1 VARS8 VAR12| VAR13
coremin |6607.808270 [3294.217900|6618.107340 [1.662016

CSSCP Matrix
VAR1 VARS8 VAR12 VAR13
coremin |-5.60623000 |-12.48935000 (4.69284000 |-0.00787117

Covariance Matrix, DF = 80
VAR1 VARS8 VAR12 VAR13
coremin |-.0700778750 |-.1561168750 |0.0586605000 |-.0000983896

Simple Statistics
Variable| N Mean| Std Dev| Median|Minimum|Maximum
coremin |81| 81.64709| 1.88027| 81.67210(78.39860| 84.71310
VAR1 |81]| 1.00000| 0.04108]| 1.00000| 0.95000| 1.05000
VAR8 |81 0.50000| 0.41079| 0.50000 0| 1.00000
VAR12 |81| 1.00000| 0.24648| 1.00000| 0.70000| 1.30000
VAR13 |81]0.0002525]0.0002033]0.0002525 5E-6{0.0005000

Pearson Correlation Coefficients, N = 81
Prob > |r] under HO: Rho=0

VAR1 VARS8 VAR12 VAR13
-0.90727 -0.20212 0.12658 -0.25734
coremin <.0001 0.0704 0.2602 0.0204

Spearman Correlation Coefficients, N = 81
Prob > |r] under HO: Rho=0

VAR1 VARS8 VAR12 VAR13
-0.90408 -0.21729 0.13451 -0.25932
coremin <.0001 0.0513 0.2312 0.0194

Kendall Tau b Correlation Coefficients, N = 81
Prob > |tau| under HO: Tau=0

VAR1 VARS8 VAR12 VAR13
-0.77650 -0.16867 0.10406 -0.20474
coremin <.0001 0.0516 0.2298 0.0182

Hoeffding Dependence Coefficients, N = 81
Prob > D under HO: D=0

VAR1 VARS VAR12 VAR13
0.31322 0.00025 -0.00573 0.00603
coremin <.0001 0.3472 0.9429 0.1216

Generated by the SAS System ('SASApp', X64_ESRV08) on April 12, 2012 at 4:18:04 PM

58

F.2 AP600: 4 inch Break, Top 5 Variables

Thursday, April 12, 2012 4:42 PM 1

Correlation Analysis
The CORR Procedure

[1 With Variables: [coremin
|5 Variables: |VAR1 VAR8 VAR11 VAR12 VAR13

SSCP Matrix
VAR1 VARS8 VAR11 VAR12| VAR13
coremin |16908.89162 [8454.59730|16913.76764 [16914.85865 |4.26840

CSSCP Matrix
VAR1 VARS8 VAR11 VAR12 VAR13
coremin |-5.867280000 |-2.782150000 |-0.991260000 |0.099750000 |-0.002573307

Covariance Matrix, DF = 242
VAR1 VARS8 VAR11 VAR12 VAR13
coremin |-.0242449587 |-.0114964876 |-.0040961157 |0.0004121901 |-.0000106335

Simple Statistics
Variable| N Mean| Std Dev| Median|Minimum | Maximum
coremin |[243| 69.60806| 0.76876| 69.57290(68.11380| 71.52660
VAR1 |243]| 1.00000| 0.04091| 1.00000| 0.95000| 1.05000
VARS8 |243| 0.50000| 0.40909| 0.50000 0| 1.00000
VAR11 |243]| 1.00000| 0.24545| 1.00000| 0.70000] 1.30000
VAR12 |243]| 1.00000| 0.24545| 1.00000| 0.70000| 1.30000
VAR13 |243]0.0002525]0.0002025|0.0002525 5E-6{0.0005000

Pearson Correlation Coefficients, N = 243
Prob > |r] under HO: Rho=0

VAR1 VARS8 VAR11 VAR12 VAR13
-0.77092| -0.03656| -0.02171| 0.00218| -0.06831
coremin <.0001 0.5706 0.7364 0.9730 0.2889

Spearman Correlation Coefficients, N = 243
Prob > |r] under HO: Rho=0

VAR1 VARS VAR11 VAR12 VAR13
-0.76563| -0.03280(-0.01617| -0.00007| -0.05008
coremin <.0001 0.6109 0.8020 0.9991 0.4371

Kendall Tau b Correlation Coefficients, N = 243
Prob > |tau| under HO: Tau=0

VAR1 VARS8 VAR11 VAR12 VAR13
-0.61577 -0.02295 -0.01218 0.00229 -0.03845
coremin <.0001 0.6436 0.8060 0.9632 0.4382

Hoeffding Dependence Coefficients, N = 243
Prob > D under HO: D=0

VAR1 VARS VAR11 VAR12 VAR13
0.18111 -0.00235| -0.00234| -0.00240| 0.00021
coremin <.0001 0.9977 0.9974 0.9987 0.3226

Generated by the SAS System ('SASApp', X64_ESRV08) on April 12, 2012 at 4:42:07 PM

59

F.3 AP600: 6 inch Break, Top 5 Variables

Thursday, April 12, 2012 5:32 PM 1

Correlation Analysis
The CORR Procedure

[1 With Variables: [coremin
|5 Variables: |VAR1 VAR7 VAR8 VAR12 VAR13

SSCP Matrix
VAR1 VAR7 VARS8 VAR12| VAR13
coremin |12415.99854 [3145.03885|6257.13615 | 12434.50585|3.12222

CSSCP Matrix
VAR1 VAR7 VARS8 VAR12 VAR13
coremin |-5.17726000 |-0.00286622 [46.54825000 | 13.33005000 |-0.01413007

Covariance Matrix, DF = 242
VAR1 VAR7 VARS8 VAR12 VAR13
coremin |-.0213936364 |-.0000118439|0.1923481405 |0.0550828512 |-.0000583887

Simple Statistics
Variable| N Mean| Std Dev| Median|Minimum | Maximum
coremin |243| 51.11595| 0.97550| 51.09220 | 48.97220(53.79780
VAR1 |243]| 1.00000| 0.04091| 1.00000| 0.95000| 1.05000
VAR7 |243]| 0.25320| 0.02072| 0.25320| 0.22788| 0.27852
VAR8 |243]| 0.50000| 0.40909| 0.50000 0] 1.00000
VAR12 |243]| 1.00000| 0.24545| 1.00000| 0.70000| 1.30000
VAR13 |243]0.0002525]0.0002025|0.0002525 5E-6{0.0005000

Pearson Correlation Coefficients, N = 243
Prob > |r] under HO: Rho=0

VAR1 VAR7 VARS8 VAR12 VAR13
-0.53609| -0.00059| 0.48199| 0.23005| -0.29558
coremin <.0001 0.9927 <.0001 0.0003 <.0001

Spearman Correlation Coefficients, N = 243
Prob > |r] under HO: Rho=0

VAR1 VAR7 VARS8 VAR12 VAR13
-0.52077 -0.00833 0.45018 0.24533 -0.30260
coremin <.0001 0.8972 <.0001 0.0001 <.0001

Kendall Tau b Correlation Coefficients, N = 243
Prob > |tau| under HO: Tau=0

VAR1 VAR7 VARS8 VAR12 VAR13
-0.41714 -0.00594 0.35799 0.19097 -0.23436
coremin <.0001 0.9046 <.0001 0.0001 <.0001

Hoeffding Dependence Coefficients, N = 243
Prob > D under HO: D=0

VAR1 VAR7 VARS8 VAR12 VAR13
0.07638 -0.00338| 0.05917| 0.01273| 0.01938
coremin <.0001 1.0000 <.0001 0.0010 <.0001

Generated by the SAS System ('SASApp', X64_ESRV08) on April 12, 2012 at 5:32:43 PM

60

F.4 AP600: 8 inch Break, Top 4 Variables

Friday, April 13, 2012 4:41 PM 1

Correlation Analysis
The CORR Procedure

[1 With Variables: [coremin
‘4 Variables: |VAR1 VAR8 VAR12 VAR13

SSCP Matrix
VAR1 VARS8 VAR12| VAR13
coremin |2739.119790 [1380.873250|2918.222760(0.615148

CSSCP Matrix
VAR1 VARS8 VAR12 VAR13
coremin |1.64289000(12.13480000 |-1.75260000 [-0.00078453

Covariance Matrix, DF = 80
VAR1 VARS8 VAR12 VAR13
coremin |0.0205361250|0.1516850000 |-.0219075000 |-.0000098066

Simple Statistics
Variable| N Mean| Std Dev| Median|Minimum|Maximum
coremin |81| 33.79601| 1.29386| 33.96140(28.58110| 37.45090
VAR1 81| 1.00000| 0.04108]| 1.00000| 0.95000| 1.05000
VAR8 |81 0.50000| 0.41079| 0.50000 0| 1.00000
VAR12 |81| 1.06667| 0.23717] 1.00000| 0.70000| 1.30000
VAR13 |81]0.0002250/0.00018360.0002525 5E-6{0.0005000

Pearson Correlation Coefficients, N = 81
Prob > |r] under HO: Rho=0

VAR1 VARS8 VAR12 VAR13
0.38637 0.28539 -0.07139 -0.04129
coremin 0.0004 0.0098 0.5265 0.7144

Spearman Correlation Coefficients, N = 81
Prob > |r] under HO: Rho=0

VAR1 VARS8 VAR12 VAR13
0.32918 0.46694 -0.23755 -0.18540
coremin 0.0027 <.0001 0.0327 0.0975

Kendall Tau b Correlation Coefficients, N = 81
Prob > |tau| under HO: Tau=0

VAR1 VARS8 VAR12 VAR13
0.25619 0.31788 -0.19474 -0.14414
coremin 0.0032 0.0002 0.0255 0.0983

Hoeffding Dependence Coefficients, N = 81
Prob > D under HO: D=0

VAR1 VARS8 VAR12 VAR13
0.01622 0.04746 0.01046 0.00160
coremin 0.0242 0.0003 0.0588 0.2683

Generated by the SAS System ('SASApp', X64_ESRV08) on April 13, 2012 at 4:41:36 PM

61

F.5 LOFT: 3 Values per Variable

Tuesday, April 24, 2012 10:26 AM 1

Correlation Analysis
The CORR Procedure

[1 with Variables: [PCT
|6 Variables: [VAR1 VAR25 VAR26 VAR44 VAR45 VAR47

SSCP Matrix
VAR1| VAR25 VAR26 VAR44 VAR45 VAR47
PCT [35809.288|3424.870 [6205105.659 |808202.822 |681860.601 [73642.606

CSSCP Matrix
VAR1| VAR25 VAR26 VAR44 VAR45| VARA47
PCT [-34.88999-3.78793 |-10562.55619 |-20307.45525 [-3041.22853 -2.75210

Covariance Matrix, DF = 728
VAR1 VAR25 VAR26 VAR44 VAR45 VARA47
PCT [-0.04792581 |-0.00520320 |-14.50900575 |-27.89485611 |-4.17751171 |-0.00378036

Simple Statistics
Variable| N| Mean| Std Dev| Median| Minimum|Maximum
PCT 729| 1010]192.24533975.73000(723.60100 1475
VAR1 [729]0.04867|0.0005781| 0.04867| 0.04796| 0.04938
VAR25 (729]0.00466|0.0000624| 0.00466| 0.00458| 0.00473
VAR26 (729]8.44000| 0.68960| 8.44000| 7.59600| 9.28400
VAR44 (729]1.12500| 0.30640(1.12500| 0.75000| 1.50000
VAR45 (729]0.93000| 0.15197| 0.93000| 0.74400| 1.11600
VAR47 (729]0.10000| 0.04085| 0.10000| 0.05000| 0.15000

Pearson Correlation Coefficients, N = 729
Prob > |r| under HO: Rho=0
VAR1 VAR25| VAR26| VAR44| VAR45| VAR47
-0.43126| -0.43386(-0.10944| -0.47357| -0.14299(-0.00048
PCT <.0001 <.0001 0.0031 <.0001 0.0001 0.9896

Spearman Correlation Coefficients, N = 729
Prob > |r| under HO: Rho=0

VAR1 VAR25 VAR26 VAR44 VAR45| VAR47
-0.33134| -0.70081| -0.16088| -0.39616| -0.21612| 0.00031
PCT <.0001 <.0001 <.0001 <.0001 <.0001 0.9934

Kendall Tau b Correlation Coefficients, N = 729
Prob > |tau| under HO: Tau=0
VAR1 VAR25 VAR26 VAR44 VAR45 VAR47
-0.25922| -0.59409| -0.12552| -0.30960| -0.16669| 0.00034
PCT <.0001 <.0001 <.0001 <.0001 <.0001 0.9906

Hoeffding Dependence Coefficients, N = 729
Prob > D under HO: D=0
VAR1 VAR25| VAR26| VAR44| VAR45 VAR47
0.02860| 0.20104| 0.00631| 0.04027] 0.01090(-0.00119
PCT <.0001 <.0001 <.0001 <.0001 <.0001 1.0000

Generated by the SAS System ('SASApp', X64_ESRV08) on April 24, 2012 at 10:26:38 AM

62

F.6 LOFT: 6 Values per Variable

Monday, April 30, 2012 11:57 AM 1

Correlation Analysis
The CORR Procedure

[1 With Variables: [PCT
|6 Variables: [VAR1 VAR25 VAR26 VAR44 VAR45 VAR47

SSCP Matrix
VAR1| VAR25 VAR26 VAR44 VAR45 VAR47
PCT [741345.7|70880.1|128445869.5 [16928250.1|14118361.3|1523872.0

CSSCP Matrix
VAR1| VAR25 VAR26 VAR44 VAR45| VAR47
PCT |-354.6168(-66.9270 [-170739.5504 |-215551.4121 |-53847.9969 -21.4771

Covariance Matrix, DF = 15624
VAR1 VAR25 VAR26 VAR44 VAR45 VAR47
PCT |-0.02269692 |-0.00428360 |-10.92803062 |-13.79617333 |-3.44649237 |-0.00137462

Simple Statistics
Variable N Mean| Std Dev| Median| Minimum |Maximum
PCT 15625 (975.29182(138.06833 |960.68800 | 723.60100 1476
VAR1 |15625| 0.04867(0.0005002| 0.04867| 0.04796| 0.04938
VAR25 |15625| 0.00466/0.0000540| 0.00466| 0.00458| 0.00473
VAR26 |15625| 8.44000| 0.59682| 8.44000(7.59600(9.28400
VAR44 |15625| 1.12500| 0.26517| 1.12500(0.75000(1.50000
VAR45 |15625| 0.93000| 0.13153| 0.93000(0.74400(1.11600
VAR47 |15625| 0.10000| 0.03536| 0.10000(0.05000(0.15000

Pearson Correlation Coefficients, N = 15625
Prob > |r| under HO: Rho=0
VAR1 VAR25 VAR26 VAR44 VAR45 VAR47
-0.32863| -0.57473| -0.13262| -0.37682| -0.18979| -0.00028
PCT <.0001 <.0001 <.0001 <.0001 <.0001 0.9719

Spearman Correlation Coefficients, N = 15625
Prob > |r] under HO: Rho=0
VAR1 VAR25 VAR26 VAR44 VAR45 VAR47
-0.25152| -0.80646| -0.17079| -0.31533| -0.25236| -0.00048
PCT <.0001 <.0001 <.0001 <.0001 <.0001 0.9517

Kendall Tau b Correlation Coefficients, N = 15625
Prob > |tau| under HO: Tau=0
VAR1 VAR25 VAR26 VAR44 VAR45 VAR47
-0.18691 -0.66938| -0.12528| -0.23445| -0.18548| -0.00035
PCT <.0001 <.0001 <.0001 <.0001 <.0001 0.9523

Generated by the SAS System ('SASApp', X64_ESRV08) on April 30, 2012 at 11:57:40 AM

63

